Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-25T12:20:00.410Z Has data issue: false hasContentIssue false

Exploratory Procedure for Component-Based Structural Equation Modeling for Simple Structure by Simultaneous Rotation

Published online by Cambridge University Press:  27 December 2024

Naoto Yamashita*
Affiliation:
Kansai University
*
Correspondence should be made to Naoto Yamashita, Faculty of Sociology, Kansai University, Osaka, Japan. Email: [email protected] https://sites.google.com/site/nyamashitahp

Abstract

Generalized structured component analysis (GSCA) is a structural equation modeling (SEM) procedure that constructs components by weighted sums of observed variables and confirmatorily examines their regressional relationship. The research proposes an exploratory version of GSCA, called exploratory GSCA (EGSCA). EGSCA is analogous to exploratory SEM (ESEM) developed as an exploratory factor-based SEM procedure, which seeks the relationships between the observed variables and the components by orthogonal rotation of the parameter matrices. The indeterminacy of orthogonal rotation in GSCA is first shown as a theoretical support of the proposed method. The whole EGSCA procedure is then presented, together with a new rotational algorithm specialized to EGSCA, which aims at simultaneous simplification of all parameter matrices. Two numerical simulation studies revealed that EGSCA with the following rotation successfully recovered the true values of the parameter matrices and was superior to the existing GSCA procedure. EGSCA was applied to two real datasets, and the model suggested by the EGSCA’s result was shown to be better than the model proposed by previous research, which demonstrates the effectiveness of EGSCA in model exploration.

Type
Theory and Methods
Copyright
Copyright © 2023 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adachi, K.. (2009). Joint Procrustes analysis for simultaneous nonsingular transformation of component score and loading matrices. Psychometrika, 74, 667683.CrossRefGoogle Scholar
Adachi, K.. (2013). Generalized joint Procrustes analysis. Computational Statistics, 28, 24492464.CrossRefGoogle Scholar
Alamer, A.. (2022). Exploratory structural equation modeling (ESEM) and bifactor ESEM for construct validation purposes: Guidelines and applied example. Research Methods in Applied Linguistics, 1.CrossRefGoogle Scholar
Asparouhov, T., Muthén, B.. (2009). Exploratory structural equation modeling. Structural Equation Modeling: a Multidisciplinary Journal, 16, 397438.CrossRefGoogle Scholar
Bartholomew, D. J., Knott, M., Moustaki, I.. (2011). Latent variable models and factor analysis: A unified approach, 3New York: Wiley.CrossRefGoogle Scholar
Bernaards, C. A., Jennrich, R. I.. (2003). Orthomax rotation and perfect simple structure. Psychometrika, 68, 585588.CrossRefGoogle Scholar
Bentler, P. M.. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31, 419456.CrossRefGoogle Scholar
Bentler, P. M.. (1986). Structural modeling and Psychometrika: An historical perspective on growth and achievements. Psychometrika, 51, 3551.CrossRefGoogle Scholar
Bergami, M., Bagozzi, R. P.. (2000). Self-categorization, affective commitment and group self-esteem as distinct aspects of social identity in the organization. British journal of social psychology, 39, 555577.CrossRefGoogle ScholarPubMed
Browne, M.. (1972). Orthogonal rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 115120.CrossRefGoogle Scholar
Browne, M. W.. (1972). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207212.CrossRefGoogle Scholar
Browne, M. W.. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111150.CrossRefGoogle Scholar
Esposito Vinzi, V., Russolillo, G.. (2013). Partial least squares algorithms and methods. Wiley Interdisciplinary Reviews: Computational Statistics, 5, 119.CrossRefGoogle Scholar
Goodall, C.. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society: Series B (Methodological), 53, 285321.CrossRefGoogle Scholar
Gower, J. C., Dijksterhuis, G. B.. (2004). Procrustes problems. Oxford: OUP.CrossRefGoogle Scholar
Harris, C. W., Kaiser, H. F.. (1964). Oblique factor analytic solutions by orthogonal transformations. Psychometrika, 29, 347362.CrossRefGoogle Scholar
Hwang, H.. (2009). Regularized Generalized Structured Component Analysis. Psychometrika, 74, 517530.CrossRefGoogle Scholar
Hwang, H., Cho, G., Jung, K., Falk, C. F., Flake, J. K., Jin, M. J., Lee, S. H.. (2021). An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis. Psychological Methods, 26, 273.CrossRefGoogle ScholarPubMed
Hwang, H., Desarbo, W. S., Takane, Y.. (2007). Fuzzy Clusterwise Generalized Structured Component Analysis. Psychometrika, 72, 181198.CrossRefGoogle Scholar
Hwang, H., Kim, S., Lee, S. & Park, T. (2017). gesca: Generalized Structured Component Analysis (GSCA). R package version 1.0.4. https://CRAN.R-project.org/package=gesca.Google Scholar
Hwang, H., Takane, Y.. (2004). Generalized structured component analysis. Psychometrika, 69, 8199.CrossRefGoogle Scholar
Hwang, H., Takane, Y.. (2014). Generalized structured component analysis: A component-based approach to structural equation modeling. Boca Raton: CRC Press.CrossRefGoogle Scholar
Hwang, H., Takane, Y., Jung, K.. (2017). Generalized structured component analysis with uniqueness terms for accommodating measurement error. Frontiers in Psychology, 8, 2137.CrossRefGoogle ScholarPubMed
Jennrich, R. I.. (1974). Simplified formulae for standard errors in maximum-likelihood factor analysis. British Journal of Mathematical and Statistical Psychology, 27, 122131.CrossRefGoogle Scholar
Jennrich, R. I. (2007). Rotation methods, algorithms, and standard errors. In Factor analysis at 100 (pp. 329–350). Routledge.Google Scholar
Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Scientific Software International.Google Scholar
Kaiser, H. F.. (1958). The Varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kaiser, H. F.. (1974). An index of factorial simplicity. Psychometrika, 39, 3136.CrossRefGoogle Scholar
Kiers, H. A. L.. (1994). Simplimax: Oblique rotation to an optimal target with simple structure. Psychometrika, 59, 567579.CrossRefGoogle Scholar
Kiers, H. A. L.. (1998). Joint orthomax rotation of the core and component matrices resulting from three-mode principal components analysis. Journal of Classification, 15, 245263.CrossRefGoogle Scholar
Lorenzo-Seva, U.. (2003). A factor simplicity index. Psychometrika, 68, 4960.CrossRefGoogle Scholar
Lorenzo-Seva, U., Ten Berge, J. M.. (2006). Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 2, 57.CrossRefGoogle Scholar
Marsh, H. W., Guo, J., Dicke, T., Parker, P. D., Craven, R. G.. (2020). Confirmatory factor analysis (CFA), exploratory structural equation modeling (ESEM), and set-ESEM: Optimal balance between goodness of fit and parsimony. Multivariate Behavioral Research, 55, 102119.CrossRefGoogle ScholarPubMed
Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J., Trautwein, U., Nagengast, B.. (2010). A new look at the big five factor structure through exploratory structural equation modeling. Psychological Assessment, 22, 471491.CrossRefGoogle Scholar
Marsh, H. W., Morin, A. J. S., Parker, P. D., Kaur, G.. (2014). Exploratory structural equation modeling: An integration of the best features of exploratory and confirmatory factor analysis. Annual Review of Clinical Psychology, 10, 85110.CrossRefGoogle ScholarPubMed
McLarnon, M. J.. (2022). Into the heart of darkness: A person-centered exploration of the Dark Triad. Personality and Individual Differences, 186.CrossRefGoogle Scholar
Mulaik, S. A.. (1986). Factor analysis and Psychometrika: Major developments. Psychometrika, 51, 2333.CrossRefGoogle Scholar
Pianta, R. C., Lipscomb, D., Ruzek, E.. (2022). Indirect effects of coaching on pre-K students’ engagement and literacy skill as a function of improved teacher-student interaction. Journal of School Psychology, 91, 6580.CrossRefGoogle ScholarPubMed
Poier, S., Nikodemska-Wołowik, A. M., & Suchanek, M. (2022). How higher-order personal values affect the purchase of electricity storage–Evidence from the German photovoltaic market. Journal of Consumer Behaviour.CrossRefGoogle Scholar
Ten Berge, J. M.. (1993). Least squares optimization in multivariate analysis. Leiden: DSWO Press, Leiden University.Google Scholar
Tenenhaus, M.. (2008). Component-based structural equation modelling. Total Quality Management, 19, 871886.CrossRefGoogle Scholar
Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., Lauro, C.. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48, 159205.CrossRefGoogle Scholar
Tucker, L. R. (1951). A method for synthesis of factor analysis studies (Personnel research section report no. 984). Department of the Army.Google Scholar
Trendafilov, N. T.. (2014). From simple structure to sparse components: A review. Computational Statistics, 29, 431454.CrossRefGoogle Scholar
Trendafilov, N. T., Fontanella, S., Adachi, K.. (2017). Sparse exploratory factor analysis. Psychometrika, 82, 778794.CrossRefGoogle Scholar
Wang, J., Wang, X.. (2019). Structural equation modeling: Applications using Mplus. New York: Wiley.CrossRefGoogle Scholar
Wold, S., Sjmöstrmöm, M., Eriksson, L.. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109130.CrossRefGoogle Scholar
Yang, Y., Chen, M., Wu, C., Easa, S. M., Zheng, X.. (2020). Structural equation modeling of drivers’ situation awareness considering road and driver factors. Frontiers in Psychology, 11, 1601.CrossRefGoogle ScholarPubMed