Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-31T23:20:15.818Z Has data issue: false hasContentIssue false

The striatonigral fibres and the feedback control of dopamine metabolism1

Published online by Cambridge University Press:  09 July 2009

I. F. Tulloch
Affiliation:
MRC Brain Metabolism Unit, Edinburgh
G. W. Arbuthnott*
Affiliation:
MRC Brain Metabolism Unit, Edinburgh
A. K. Wright
Affiliation:
MRC Brain Metabolism Unit, Edinburgh
M. Garcia-Munoz
Affiliation:
MRC Brain Metabolism Unit, Edinburgh
N. M. Nicolaou
Affiliation:
MRC Brain Metabolism Unit, Edinburgh
*
2Address for correspondence: Dr G. W. Arbuthnott, MRC Brain Metabolism Unit, 1 George Square, Edinburgh.

Synopsis

It proved possible to make lesions which interrupted the striatonigral GABA-containing pathway in the rat brain without causing concomitant damage to the nigrostriatal dopamine containing system. Estimations of striatal concentrations of dopamine (DA), dihydroxyphenyl-acetic acid (DOPAC) and homovanillic acid (HVA) indicated that these lesions had no influence either on normal striatal DA turnover or on the enhancement of DA turnover induced by neuroleptics. Behavioural experiments suggested a motor output function for the striatonigral pathway.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This presentation is based largely on preliminary work already published as chapter 3 in Psychobiology of the Striatum which is edited by A. R. Cools, A. H. M. Lohman and J. H. L. Van Den Bercken, and published in 1977 by Elsevier/North Holland Biochemical Press to whom we are grateful for permission to reproduce the material. Since then, further work (to be published) has done nothing to modify the interpretation of the results, and recent experiments with kainic acid, which causes the destruction of cell bodies in the striatum without damage to the DA-containing terminals, led others to similar conclusions (Di Chiara et al. 1977).

References

Andén, N.-E. & Stock, G. (1973). Inhibitory effect of gamma-hydroxybutyric acid and gamma-aminobutyric acid on the dopamine cells in the substantia nigra. Naunyn-Schmiede-bergs Archiv für experimentelle Pathologie und Pharma-kologie 279, 8992.CrossRefGoogle Scholar
Andén, N.-E., Dahlstrom, A., Fuxe, K. & Larsson, K. (1966). Functional role of the nigro-neostriatal dopamine neurones. Acta Pharmacologia et Toxicologia (Copenhagen) 24, 263274.CrossRefGoogle Scholar
Andén, N.-E., Carlsson, A. & Haggendahl, J. (1969). Adrenergic mechanisms. Annual Reviews of Pharmacology 9, 119134.CrossRefGoogle ScholarPubMed
Andén, N.-E., Magnusson, T. & Stock, G. (1974). Effect of anaesthetic agents on the synthesis and disappearance of brain dopamine normally and after haloperidol, KCl or axotomy. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie 283, 409418.CrossRefGoogle ScholarPubMed
Aghajanian, G. K. & Bunney, B. S. (1973). Central dopamine neurons: neurophysiological identification and responses to drugs. In Frontiers of Catecholamine Research (ed. Usdin, E. and Snyder, S. H.), pp. 643648. Pergamon Press: Oxford.CrossRefGoogle Scholar
Agid, Y., Javoy, F. & Glowinski, J. (1973). Hyperactivity of remaining dopaminergic neurones after partial destruction of the nigro-striatal dopaminergic system in the rat. Nature New Biology 245, 150152.CrossRefGoogle ScholarPubMed
Arbuthnott, G. W. & Ungerstedt, U. (1975). Turning behaviour induced by electrical stimulation of the nigro-neostriatal system of the rat. Experimental Neurology 47, 162172.CrossRefGoogle ScholarPubMed
Balcom, G. J., Lennox, R. H. & Meyerhoff, J. L. (1975). Regional у-aminobutyric acid levels in rat brain determined after microwave fixation. Journal of Neurochemistry 24, 609613.Google ScholarPubMed
Bedard, P. & Larochelle, L. (1973). Effect of section of the strionigral fibres on dopamine turnover in the forebrain of the rat. Experimental Neurology 41, 314322.CrossRefGoogle ScholarPubMed
Björklund, A. & Lindvall, O. (1975). Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Research 83, 531537.CrossRefGoogle ScholarPubMed
Brown, J. H. & Makman, M. H. (1973). Influence of neuroleptic drugs and apomorphine on dopamine-sensitive adenylate cyclase of retina. Journal of Neurochemistry 21, 477479.CrossRefGoogle ScholarPubMed
Bruno, A. & Bruno, S. C. (1966). Effects of L-dopa on pharmacological parkinsonism. Acta Psychiatrica Scandinavia 42, 264271.Google ScholarPubMed
Bunney, B. S. & Aghajanian, G. K. (1975). Evidence for drug actions on both pre-and postsynaptic catecholamine receptors in the CNS. In Pre-and Postsynaptic Receptors (ed. Usdin, E. and Bunney, W. E.), pp. 89121. Marcel Dekker: New York.Google Scholar
Bunney, B. S. & Aghajanian, G. K. (1976). D-Amphetamine-induced inhibition of central dopaminergic neurons: mediation by a striato-nigral feedback pathway. Science 192, 391393.CrossRefGoogle ScholarPubMed
Bunney, B. S., Walters, J. R., Roth, R. H. & Aghajanian, G. K. (1973). Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. Journal of Pharmacology and Experimental Therapeutics 185, 560571.Google ScholarPubMed
Carlsson, A. & Lindqvist, M. (1963). Effect of chlorproma-zine or halperiodol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacologia et Toxicologia 20, 140144.CrossRefGoogle ScholarPubMed
Chiara, G. Di, Porceddu, M. L., Fratta, W. & Gessa, G. L. (1977). Postsynaptic receptors are not essential for DA feedback regulation. Nature 267, 270272.CrossRefGoogle ScholarPubMed
Corrodi, H., Fuxe, K. & Hokfelt, T. (1967). The effect of neuroleptics on the activity of central catecholamine neurones. Life Sciences 6, 767774.CrossRefGoogle ScholarPubMed
Da Prada, M. & Pletscher, A. (1966). Acceleration of the cerebral dopamine turnover by chlorpromazine. Experienta (Basel) 22, 465466.CrossRefGoogle ScholarPubMed
Deniau, J. H., Feger, J. & Le Guyader, C. (1976). Striatal evoked inhibition of identified nigrothalamic neurons. Brain Research 104, 152156.CrossRefGoogle Scholar
Dray, A., Oakley, N. R. & Simmonds, M. A. (1975). Rotational behaviour following inhibition of GABA metabolism unilaterally in the rat substantia nigra. Journal of Pharmacology 27, 627629.CrossRefGoogle ScholarPubMed
Dray, A., Gonye, T. J. & Oakley, N. (1976 a). Caudate stimulation and substantia nigra activity in the rat. Journal of Physiology 259, 825849.CrossRefGoogle ScholarPubMed
Dray, A., Gonye, T. J., Oakley, N. R. & Tanner, T. (1976 b). Evidence for the existence of a Raphe projection to the substantia nigra in rat. Brain Research 113, 4557.CrossRefGoogle Scholar
Dresse, A. (1967). Contribution experimentale à l'étude du mécanisme d'action des neuroleptiques. Thèse d'Agregation de L'Enseignement Superieur, Université de Liège, Belgium.Google Scholar
Ernst, A. M. (1965). Relation between the action of dopamine and apomorphine and their O-methylated derivatives upon the CNS. Psychopharmacologia (Berlin) 7, 391399.CrossRefGoogle ScholarPubMed
Fahn, S. & Cote, L. J. (1968). Regional distribution of gamma-aminobutyric acid (GABA) in brain of the rhesus monkey. Journal of Neurochemistry 15, 209213.CrossRefGoogle ScholarPubMed
Farnebo, L.-O. & Hamberger, B. (1971). Drug-induced changes in the release of 3H monoamines from field stimulated rat brain slices. Acta Physiologica Scandinavia Supplement 371, 3544.CrossRefGoogle Scholar
Garcia-Munoz, M., Nicolaou, N. M., Tulloch, I. F., Wright, A. K. & Arbuthnott, G. W. (1977). Striato-nigral fibres – feedback loop or output pathway? Nature 265, 363365.CrossRefGoogle ScholarPubMed
Geffen, L. B., Jessel, T. M., Cuello, A. C. & Iversen, L. L. (1976). Release of dopamine from dendrites in rat substantia nigra. Nature 260, 258260.CrossRefGoogle ScholarPubMed
Greengard, P. & Kebabian, J. W. (1974). Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Federation Proceedings 33, 10591067.Google ScholarPubMed
Groves, P. M., Wilson, C. J., Young, S. J. & Rebec, G. V. (1975). Self-inhibition by dopaminergic neurons. Science 190, 522529.CrossRefGoogle ScholarPubMed
Guyenet, R. C., Agid, Y., Javoy, F., Beaujouan, J. C., Rossier, J. & Glowinski, J. (1975). Effects of dopaminergic receptor agonists and antagonists on the activity of the neostriatal cholinergic system. Brain Research 84, 227244.CrossRefGoogle Scholar
Hattori, T., Fibiger, H. C. & McGeer, P. L. (1975). Demonstration of a pallidonigral projection innervating dopaminergic neurons. Journal of Comparative Neurology 162, 487504.CrossRefGoogle ScholarPubMed
Hornykiewicz, O. (1966). Dopamine (3-hydroxytyramine) and brain function. Pharmacological Reviews 18, 925964.Google ScholarPubMed
House, C. R. & Ginsborg, B. L. (1976). Actions of a dopamine analogue and a neuroleptic at a neuroglandular synapse. Nature 261, 323333.CrossRefGoogle Scholar
Javoy, F., Agid, Y., Bouvet, D. & Glowinski, J. (1974). Changes in neostriatal DA metabolism after carbachol or atropine microinjections into the substantia nigra. Brain Research 68, 253260.CrossRefGoogle ScholarPubMed
Kebabian, J. W., Petzold, G. L. & Greengard, P. (1972). Dopamine sensitive adenylate cyclase in caudate nucleus of rat brain and its similarities to the ‘dopamine receptor’. Proceedings of the National Academy of Science (USA) 69, 21452149.CrossRefGoogle Scholar
Klüver, H. & Barrera, E. (1953). A method for the combined staining of cells and fibres in the nervous system. Journal of Neuropathology and Experimental Neurology 12, 400403.CrossRefGoogle ScholarPubMed
König, J. F. R. & Klippel, R. A. (1963). The Rat Brain. Williams and Wilkins: Baltimore.Google Scholar
Korf, J., Zielman, M. & Westerink, B. H. C. (1976). Dopamine release in substantia nigra Nature 260, 257258.CrossRefGoogle ScholarPubMed
Marco, E., Mao, C. C., Cheney, D. L., Revuelta, A. & Costa, E. (1976). The effects of antipsychotics on the turnover rate of GABA and acetylcholine in rat brain nuclei. Nature 264, 363365.CrossRefGoogle ScholarPubMed
Marshall, J. F., Richardson, J. S. & Teitelbaum, P. (1974). Nigrostriatal bundle damage and the lateral hypothalamic syndrome. Journal of Comparative and Physiological Psychology 87, 808830.CrossRefGoogle ScholarPubMed
McGeer, E. G., McGeer, P. L., Grewaal, D. S. & Singh, V. K. (1975). Cholinergic interneurons and their relation to dopaminergic nerve endings. Journal de Pharmacologic 2, 143152.Google Scholar
Miller, R. J., Horn, A. S. & Iversen, L. L. (1974). The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′, 5′-monophosphate production in rat neostriatum and limbic forebrain. Molecular Pharmacology 10, 759766.Google Scholar
Nybäck, H. & Sedvall, G. (1968). Effect of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-C14 in brain. Journal of Pharmacology and Experimental Therapeutics 162, 294308.Google ScholarPubMed
Nybäck, H. V., Murrin, L. C., Sedvall, G. C. & Roth, R. H. (1975). Pharmacological and electrical stimulation of dopamine turnover in the rat brain. In Antipsychotic Drugs: Pharmacodynamics and Pharmacokinetics (ed. Sedvall, G.), pp. 175182. Pergamon Press: Oxford.Google Scholar
O'Keefe, R., Sharman, D. F. & Vogt, M. (1970). Effects of drugs used in psychoses on cerebral dopamine metabolism. British Journal of Pharmacology 38, 287304.CrossRefGoogle Scholar
Palkovits, M., Browstein, M., Saavedra, J. & Axelrod, J. (1974). Norepinephrine and dopamine content of hypothalamic nuclei of the rat. Brain Research 77, 137149.CrossRefGoogle ScholarPubMed
Pearson, J. D. M. & Sharman, D. F. (1975 a). The estimation of 3, 4-dihydroxyphenylacetic acid, homovanillic acid and homo-isovanillic acid in nervous tissue by gas–liquid chromatography and electron capture detection. British Journal of Pharmacology 53, 143148.CrossRefGoogle ScholarPubMed
Pearson, J. D. M. & Sharman, D. F. (1975 b). A method for the estimation of γ-aminobutyric acid, using gas–liquid chromatography and electron capture detection. Journal of Neurochemistry 24, 12251228.CrossRefGoogle ScholarPubMed
Prado-Alcala, R. A., Grimberg, Z. J., Arditti, Z. L., Garcia, M. M., Prieto, H. G. & Brust-Carmona, H. (1975). Learning deficits produced by chronic and reversible lesions of the corpus striatum in rats. Physiology and Behaviour 15, 283287.CrossRefGoogle ScholarPubMed
Racagni, G., Cheney, D. L., Trabucchi, M. & Costa, E. (1976). In vivo actions of clozapine and haloperidol on the turnover rate of acetylcholine in rat striatum. Journal of Pharmacology and Experimental Therapeutics 196, 323332.Google ScholarPubMed
Randrup, A. & Munkvad, I. (1970). Biochemical, anatomical and psychological investigations of stereotyped behaviour induced by amphetamines. In Amphetamines and Related Compounds (ed. Costa, E. and Garattini, S.), pp. 695713. Raven Press: New York.Google Scholar
Rinvik, E. (1975). Demonstration of nigrothalamic connections in the cat by retrograde axonal transport of horseradish peroxidase. Brain Research 90, 313318.CrossRefGoogle ScholarPubMed
Roth, R. H. (1973). Inhibition by γ-hydroxybutyrate of chlorpromazine-induced increase in homovanillic acid. British Journal of Pharmacology 47, 408414.CrossRefGoogle ScholarPubMed
Seeman, P. & Lee, T. (1975). Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188, 12171219.CrossRefGoogle ScholarPubMed
Snyder, S. H., Banerjee, S. P., Yamamara, H. I. & Greenberg, D. (1974). Drugs, neurotransmitters and schizophrenia. Science 184, 12431253.CrossRefGoogle ScholarPubMed
Stricker, E. M. & Zigmond, M. J. (1976). Recovery of function after damage to central catecholamine-containing neurons: a neurochemical model for the lateral hypothal-mic syndrome. In Progress in Psychobiology and Physiological Psychology, vol. 6 (ed. Sprague, J. M.), pp. 121187. Academic Press: New York.Google Scholar
Szabo, J. (1962). Topical distribution of the striatal efferents in the monkey. Experimental Neurology 5, 2136.CrossRefGoogle Scholar
Ungerstedt, U. (1968). 6-Hydroxydopamine induced degeneration of central monoamine neurones. European Journal of Pharmacology 5, 107110.CrossRefGoogle Scholar
Ungerstedt, U. (1971). Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiologica Scandinavica 82, suppl. 367, 4968.CrossRefGoogle Scholar
Ungerstedt, U. (1973). Selective lesions of central catecholamine pathways: application in functional studies. In Neurosciences Research, vol. 5 (ed. Ehrenpreis, S. and Kopin, I.), pp. 7396. Academic Press: New York.Google Scholar
Ungerstedt, U. & Arbuthnott, G. W. (1970). Quantitative recording of rotational behaviour in rats after 6-OH-DA lesions of the nigrostriatal DA system. Brain Research 24, 485493.CrossRefGoogle Scholar
Ungerstedt, U. & Marshall, J. F. (1975). Nerve degeneration in functional studies: experiments illustrating the problem of lesion specificity and compensatory supersensitivity. In Chemical Tools in Catecholamine Research, vol. 1 (ed. Jonsson, G., Malmfors, T. and Sachs, C.), pp. 311318. North-Holland: Amsterdam.Google Scholar
von Voightlander, P. E. & Moore, K. E. (1973). Involvement of nigro-striatal neurons in the in vivo release of dopamine by amphetamine, amantadime and tyramine. Journal of Pharmacology and Experimental Therapeutics 184, 542552.Google Scholar
Voneida, T. J. (1960). An experimental study of the course and destination of fibres arising in the head of the caudate nucleus in the cat and monkey. Journal of Comparative Neurology 115, 7587.CrossRefGoogle Scholar
Yeh, B. K., McNay, J. L. & Goldberg, L. I. (1969). Attenuation of dopamine renal and mesenteric vasodilation by haloperidol: evidence for a specific dopamine receptor. Journal of Pharmacology and Experimental Therapeutics 168, 303309.Google ScholarPubMed
Yoshida, M., Rabin, A. & Anderson, M. (1972). Monosynaptic inhibition of pallidal neurons by axon collaterals of caudato-nigral fibres. Experimental Brain Research 15, 333347.CrossRefGoogle Scholar