Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T22:59:12.590Z Has data issue: false hasContentIssue false

Social stress under binge-like alcohol withdrawal in adolescence: evidence of cannabidiol effect on maladaptive plasticity in rats

Published online by Cambridge University Press:  06 September 2022

Anna Brancato*
Affiliation:
Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’ Alessandro’, University of Palermo, Palermo, Italy
Valentina Castelli
Affiliation:
Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
Gianluca Lavanco
Affiliation:
Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’ Alessandro’, University of Palermo, Palermo, Italy
Cesare D'Amico
Affiliation:
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
Salvatore Feo
Affiliation:
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy ATEN Center, Genomic and Proteomic Laboratory, University of Palermo, Palermo, Italy
Giuseppe Pizzolanti
Affiliation:
Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’ Alessandro’, University of Palermo, Palermo, Italy
Martin Kuchar
Affiliation:
Department of Chemistry of Natural Compounds, University of Chemistry and Technology, 166 28 Prague, Czech Republic
Carla Cannizzaro
Affiliation:
Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
*
Author for correspondence: Anna Brancato, E-mail: [email protected]

Abstract

Background

Alcohol binge drinking may compromise the functioning of the nucleus accumbens (NAc), i.e. the neural hub for processing reward and aversive responses.

Methods

As socially stressful events pose particular challenges at developmental stages, this research applied the resident–intruder paradigm as a model of social stress, to highlight behavioural neuroendocrine and molecular maladaptive plasticity in rats at withdrawal from binge-like alcohol exposure in adolescence. In search of a rescue agent, cannabidiol (CBD) was selected due to its favourable effects on alcohol- and stress-related harms.

Results

Binge-like alcohol exposed intruder rats displayed a compromised defensive behaviour against the resident and a blunted response of the stress system, in addition to indexes of abnormal dopamine (DA)/glutamate plasticity and dysfunctional spine dynamics in the NAc. CBD administration (60 mg/kg) was able to: (1) increase social exploration in the binge-like alcohol exposed intruder rats, at the expenses of freezing time, and in control rats, which received less aggressive attacks from the resident; (2) reduce corticosterone levels independently on alcohol previous exposure; (3) restore DA transmission and (4) facilitate excitatory postsynaptic strength and remodelling.

Conclusions

Overall, the maladaptive behavioural and synaptic plasticity promoted by the intersection between binge-like alcohol withdrawal and exposure to adverse social stress can be rescued by a CBD détente effect that results in a successful defensive strategy, supported by a functional endocrine and synaptic plasticity. The current data highlight CBD's relevant therapeutic potential in alcohol- and stress-related harms, and prompt further investigation on its molecular targets.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. G., Kulkarni, A., Harper, M., & Konopka, G. (2020). Single-cell analysis of Foxp1-driven mechanisms essential for striatal development. Cell Reports, 30(9), 30513066.e7. https://doi.org/10.1016/j.celrep.2020.02.030.CrossRefGoogle ScholarPubMed
Araujo, D. J., Anderson, A. G., Berto, S., Runnels, W., Harper, M., Ammanuel, S., … Konopka, G. (2015). FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes & Development, 29(20), 20812096. https://doi.org/10.1101/gad.267989.115.CrossRefGoogle ScholarPubMed
Baik, J. H. (2020). Stress and the dopaminergic reward system. Experimental & Molecular Medicine, 52(12), 18791890. https://doi.org/10.1038/s12276-020-00532-4.CrossRefGoogle ScholarPubMed
Bakas, T., van Nieuwenhuijzen, P. S., Devenish, S. O., McGregor, I. S., Arnold, J. C., & Chebib, M. (2017). The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors. Pharmacological Research, 119, 358370.CrossRefGoogle Scholar
Bath, K. G., Russo, S. J., Pleil, K. E., Wohleb, E. S., Duman, R. S., & Radley, J. J. (2017). Circuit and synaptic mechanisms of repeated stress: Perspectives from differing contexts, duration, and development. Neurobiology of Stress, 7, 137151. https://doi.org/10.1016/j.ynstr.2017.05.001.CrossRefGoogle ScholarPubMed
Bhattacharyya, S., Morrison, P. D., Fusar-Poli, P., Martin-Santos, R., Borgwardt, S., Winton-Brown, T., … McGuire, P. K. (2010). Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology, 35(3), 764774. https://doi.org/10.1038/npp.2009.184.CrossRefGoogle ScholarPubMed
Blaine, S. K., & Sinha, R. (2017). Alcohol, stress, and glucocorticoids: From risk to dependence and relapse in alcohol use disorders. Neuropharmacology, 122, 136147. https://doi.org/10.1016/j.neuropharm.2017.01.037.CrossRefGoogle ScholarPubMed
Boutros, N., Der-Avakian, A., Kesby, J. P., Lee, S., Markou, A., & Semenova, S. (2018). Effects of adolescent alcohol exposure on stress-induced reward deficits, brain CRF, monoamines and glutamate in adult rats. Psychopharmacology, 235(3), 737747. https://doi.org/10.1007/s00213-017-4789-0.CrossRefGoogle ScholarPubMed
Brancato, A., Castelli, V., Cavallaro, A., Lavanco, G., Plescia, F., & Cannizzaro, C. (2018). Pre-conceptional and peri-gestational maternal binge alcohol drinking produces inheritance of mood disturbances and alcohol vulnerability in the adolescent offspring. Frontiers in Psychiatry, 9, 150. https://doi.org/10.3389/fpsyt.2018.00150.CrossRefGoogle ScholarPubMed
Brancato, A., Castelli, V., Lavanco, G., Marino, R., & Cannizzaro, C. (2020). In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? Journal of Psychopharmacology, 34(6), 663679. https://doi.org/10.1177/0269881120916135.CrossRefGoogle Scholar
Brancato, A., Castelli, V., Lavanco, G., Tringali, G., Micale, V., Kuchar, M., … Cannizzaro, C. (2021). Binge-like alcohol exposure in adolescence: Behavioural, neuroendocrine and molecular evidence of abnormal neuroplasticity… and return. Biomedicines, 9(9), 1161. https://doi.org/10.3390/biomedicines9091161.CrossRefGoogle ScholarPubMed
Brancato, A., Plescia, F., Lavanco, G., Cavallaro, A., & Cannizzaro, C. (2016). Continuous and intermittent alcohol free-choice from pre-gestational time to lactation: Focus on drinking trajectories and maternal behavior. Frontiers in Behavioral Neuroscience, 10, 31. https://doi.org/10.3389/fnbeh.2016.00031.CrossRefGoogle ScholarPubMed
Burke, A. R., & Miczek, K. A. (2014). Stress in adolescence and drugs of abuse in rodent models: Role of dopamine, CRF, and HPA axis. Psychopharmacology, 231(8), 15571580. https://doi.org/10.1007/s00213-013-3369-1.CrossRefGoogle ScholarPubMed
Burke, A. R., & Miczek, K. A. (2015). Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: Role of social experience and adaptive coping behavior. Psychopharmacology, 232(16), 30673079. https://doi.org/10.1007/s00213-015-3947-5.CrossRefGoogle ScholarPubMed
Campos, A. C., Moreira, F. A., Gomes, F. V., Del Bel, E. A., & Guimarães, F. S. (2012). Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1607), 33643378. https://doi.org/10.1098/rstb.2011.0389.CrossRefGoogle ScholarPubMed
Cannizzaro, C., Talani, G., Brancato, A., Mulas, G., Spiga, S., De Luca, M. A., … Diana, M. (2019). Dopamine restores limbic memory loss, dendritic spine structure, and NMDAR-dependent LTD in the nucleus accumbens of alcohol-withdrawn rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39(5), 929943. https://doi.org/10.1523/JNEUROSCI.1377-18.2018.CrossRefGoogle ScholarPubMed
Castelli, V., Brancato, A., Cavallaro, A., Lavanco, G., & Cannizzaro, C. (2017). Homer2 and alcohol: A mutual interaction. Frontiers in Psychiatry, 8, 268. https://doi.org/10.3389/fpsyt.2017.00268.CrossRefGoogle ScholarPubMed
Dani, J. A., & Zhou, F. M. (2004). Selective dopamine filter of glutamate striatal afferents. Neuron, 42(4), 522524. https://doi.org/10.1016/j.neuron.2004.05.008.CrossRefGoogle ScholarPubMed
Deal, A. L., Konstantopoulos, J. K., Weiner, J. L., & Budygin, E. A. (2018). Exploring the consequences of social defeat stress and intermittent ethanol drinking on dopamine dynamics in the rat nucleus accumbens. Scientific Reports, 8(1), 332. https://doi.org/10.1038/s41598-017-18706-y.CrossRefGoogle ScholarPubMed
Deiana, S., Watanabe, A., Yamasaki, Y., Amada, N., Arthur, M., Fleming, S., … Riedel, G. (2012). Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ⁹-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacology, 219(3), 859873. https://doi.org/10.1007/s00213-011-2415-0.CrossRefGoogle ScholarPubMed
Diaz, V., & Lin, D. (2020). Neural circuits for coping with social defeat. Current Opinion in Neurobiology, 60, 99107. https://doi.org/10.1016/j.conb.2019.11.016.CrossRefGoogle ScholarPubMed
Dong, E., Guidotti, A., Zhang, H., & Pandey, S. C. (2018). Prenatal stress leads to chromatin and synaptic remodeling and excessive alcohol intake comorbid with anxiety-like behaviors in adult offspring. Neuropharmacology, 140, 7685. https://doi.org/10.1016/j.neuropharm.2018.07.010.CrossRefGoogle ScholarPubMed
Elsaid, S., Kloiber, S., & Le Foll, B. (2019). Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings. Progress in Molecular Biology and Translational Science, 167, 2575. https://doi.org/10.1016/bs.pmbts.2019.06.005.CrossRefGoogle ScholarPubMed
Evans, B. E., Greaves-Lord, K., Euser, A. S., Franken, I. H., & Huizink, A. C. (2012). The relation between hypothalamic–pituitary–adrenal (HPA) axis activity and age of onset of alcohol use. Addiction (Abingdon, England), 107(2), 312322. https://doi.org/10.1111/j.1360-0443.2011.03568.x.CrossRefGoogle ScholarPubMed
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In Bolles, R. C. & Beecher, M. D. (Eds.), Evolution and learning (pp. 185212). New York: Lawrence Erlbaum Associates, Inc.Google Scholar
Fasano, C., Bourque, M. J., Lapointe, G., Leo, D., Thibault, D., Haber, M., … Trudeau, (2013). Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors. Neuropharmacology, 67, 432443. https://doi.org/10.1016/j.neuropharm.2012.11.030.CrossRefGoogle ScholarPubMed
Faure, A., Reynolds, S. M., Richard, J. M., & Berridge, K. C. (2008). Mesolimbic dopamine in desire and dread: Enabling motivation to be generated by localized glutamate disruptions in nucleus accumbens. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(28), 71847192. https://doi.org/10.1523/JNEUROSCI.4961-07.2008.CrossRefGoogle ScholarPubMed
Fortier, C. B., Whitworth, J. W., Fonda, J. R., Currao, A., Beck, B. M., Levin, L., … McGlinchey, R. E. (2021). Early adolescent binge drinking increases risk of psychopathology in post-9/11 veterans and mild traumatic brain injury exacerbates symptom severity. Alcohol and Alcoholism, 56(1), 116124. https://doi.org/10.1093/alcalc/agaa075.CrossRefGoogle ScholarPubMed
Friard, O., & Gamba, M. (2016). BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7(11), 13251330.CrossRefGoogle Scholar
Garcia-Oscos, F., Koch, T., Pancholi, H., Trusel, M., Daliparthi, V., Co, M., … Roberts, T. F. (2021). Autism-linked gene FoxP1 selectively regulates the cultural transmission of learned vocalizations. Science Advances, 7(6), eabd2827. https://doi.org/10.1126/sciadv.abd2827.CrossRefGoogle ScholarPubMed
Guimarães, V. M., Zuardi, A. W., Del Bel, E. A., & Guimarães, F. S. (2004). Cannabidiol increases Fos expression in the nucleus accumbens but not in the dorsal striatum. Life Sciences, 75(5), 633638. https://doi.org/10.1016/j.lfs.2004.01.015.CrossRefGoogle ScholarPubMed
Guzowski, J. F., Miyashita, T., Chawla, M. K., Sanderson, J., Maes, L. I., Houston, F. P., … Barnes, C. A. (2006). Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 10771082. https://doi.org/10.1073/pnas.0505519103.CrossRefGoogle ScholarPubMed
Halkjelsvik, T., Brunborg, G. S., & Bye, E. K. (2021). Are changes in binge drinking among European adolescents driven by changes in computer gaming? Drug and Alcohol Review, 40(5), 808816. https://doi.org/10.1111/dar.13226.CrossRefGoogle ScholarPubMed
Hikida, T., Yawata, S., Yamaguchi, T., Danjo, T., Sasaoka, T., Wang, Y., & Nakanishi, S. (2013). Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors. Proceedings of the National Academy of Sciences of the United States of America, 110(1), 342347. https://doi.org/10.1073/pnas.1220358110.CrossRefGoogle ScholarPubMed
Hurd, Y. L., Spriggs, S., Alishayev, J., Winkel, G., Gurgov, K., Kudrich, C., … Salsitz, E. (2019). Cannabidiol for the reduction of cue-induced craving and anxiety in drug-abstinent individuals with heroin use disorder: A double-blind randomized placebo-controlled trial. The American Journal of Psychiatry, 176(11), 911922. https://doi.org/10.1176/appi.ajp.2019.18101191.CrossRefGoogle ScholarPubMed
Jones, S. A., Lueras, J. M., & Nagel, B. J. (2018). Effects of binge drinking on the developing brain. Alcohol Research: Current Reviews, 39(1), 8796.Google ScholarPubMed
Karkhanis, A. N., Rose, J. H., Huggins, K. N., Konstantopoulos, J. K., & Jones, S. R. (2015). Chronic intermittent ethanol exposure reduces presynaptic dopamine neurotransmission in the mouse nucleus accumbens. Drug and Alcohol Dependence, 150, 2430. https://doi.org/10.1016/j.drugalcdep.2015.01.019.CrossRefGoogle ScholarPubMed
Kern, C. H., Stanwood, G. D., & Smith, D. R. (2010). Preweaning manganese exposure causes hyperactivity, disinhibition, and spatial learning and memory deficits associated with altered dopamine receptor and transporter levels. Synapse (New York, N.Y.), 64(5), 363378. https://doi.org/10.1002/syn.20736.CrossRefGoogle ScholarPubMed
Koob, G. F. (2010). The role of CRF and CRF-related peptides in the dark side of addiction. Brain Research, 1314, 314. https://doi.org/10.1016/j.brainres.2009.11.008.CrossRefGoogle ScholarPubMed
Koob, G. F. (2013). Theoretical frameworks and mechanistic aspects of alcohol addiction: Alcohol addiction as a reward deficit disorder. Current Topics in Behavioral Neurosciences, 13, 330. https://doi.org/10.1007/7854_2011_129.CrossRefGoogle ScholarPubMed
Koolhaas, J. M., Coppens, C. M., de Boer, S. F., Buwalda, B., Meerlo, P., & Timmermans, P. J. (2013). The resident–intruder paradigm: A standardized test for aggression, violence and social stress. Journal of Visualized Experiments: JoVE (77), e4367. https://doi.org/10.3791/4367.Google ScholarPubMed
Korn, C., Akam, T., Jensen, K., Vagnoni, C., Huber, A., Tunbridge, E. M., & Walton, M. E. (2021). Distinct roles for dopamine clearance mechanisms in regulating behavioral flexibility. Molecular Psychiatry, 26(12), 71887199. https://doi.org/10.1038/s41380-021-01194-y.CrossRefGoogle ScholarPubMed
Kruusmägi, M., Kumar, S., Zelenin, S., Brismar, H., Aperia, A., & Scott, L. (2009). Functional differences between D(1) and D(5) revealed by high resolution imaging on live neurons. Neuroscience, 164(2), 463469.CrossRefGoogle Scholar
Maggio, N., Shavit Stein, E., & Segal, M. (2018). Cannabidiol regulates long term potentiation following status epilepticus: Mediation by calcium stores and serotonin. Frontiers in Molecular Neuroscience, 11, 32. https://doi.org/10.3389/fnmol.2018.00032.CrossRefGoogle ScholarPubMed
Mastinu, A., Ascrizzi, R., Ribaudo, G., Bonini, S. A., Premoli, M., Aria, F., … Memo, M. (2022). Prosocial effects of nonpsychotropic Cannabis sativa in mice. Cannabis and Cannabinoid Research, 7(2), 170178. https://doi.org/10.1089/can.2021.0017.CrossRefGoogle ScholarPubMed
Melas, P. A., Scherma, M., Fratta, W., Cifani, C., & Fadda, P. (2021). Cannabidiol as a potential treatment for anxiety and mood disorders: Molecular targets and epigenetic insights from preclinical research. International Journal of Molecular Sciences, 22(4), 1863. https://doi.org/10.3390/ijms22041863.CrossRefGoogle ScholarPubMed
Nemeškalová, A., Hájková, K., Mikulů, L., Sýkora, D., & Kuchař, M. (2020). Combination of UV and MS/MS detection for the LC analysis of cannabidiol-rich products. Talanta, 219, 121250. https://doi.org/10.1016/j.talanta.2020.121250.CrossRefGoogle ScholarPubMed
Norris, C., Loureiro, M., Kramar, C., Zunder, J., Renard, J., Rushlow, W., & Laviolette, S. R. (2016). Cannabidiol modulates fear memory formation through interactions with serotonergic transmission in the mesolimbic system. Neuropsychopharmacology, 41(12), 28392850. https://doi.org/10.1038/npp.2016.93.CrossRefGoogle ScholarPubMed
Ostroumov, A., & Dani, J. A. (2018). Convergent neuronal plasticity and metaplasticity mechanisms of stress, nicotine, and alcohol. Annual Review of Pharmacology and Toxicology, 58, 547566. https://doi.org/10.1146/annurev-pharmtox-010617-052735.CrossRefGoogle ScholarPubMed
Paillé, V., Picconi, B., Bagetta, V., Ghiglieri, V., Sgobio, C., Di Filippo, M., … Calabresi, P. (2010). Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(42), 1418214193. https://doi.org/10.1523/JNEUROSCI.2149-10.2010.CrossRefGoogle ScholarPubMed
Paxinos, G., & Watson, C. (1986). The rat brain in stereotaxic coordinates. New York: Academic Press.Google Scholar
Plescia, F., Cannizzaro, E., Brancato, A., Martines, F., Di Naro, A., Mucia, M., … Cannizzaro, C. (2015). Acetaldehyde effects in the brain. Acta Medica Mediterranea, 31(4), 813817.Google Scholar
Prybylowski, K., Fu, Z., Losi, G., Hawkins, L. M., Luo, J., Chang, K., … Vicini, S. (2002). Relationship between availability of NMDA receptor subunits and their expression at the synapse. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(20), 89028910. https://doi.org/10.1523/JNEUROSCI.22-20-08902.2002.CrossRefGoogle ScholarPubMed
Reshetnikov, V. V., & Bondar, N. P. (2021). The role of stress-induced changes of Homer1 expression in stress susceptibility. Biochemistry. Biokhimiia, 86(6), 613626. https://doi.org/10.1134/S0006297921060018.CrossRefGoogle ScholarPubMed
Retson, T. A., Sterling, R. C., & Van Bockstaele, E. J. (2016). Alcohol-induced dysregulation of stress-related circuitry: The search for novel targets and implications for interventions across the sexes. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 65, 252259. https://doi.org/10.1016/j.pnpbp.2015.05.009.CrossRefGoogle ScholarPubMed
Reynolds, S. M., & Berridge, K. C. (2008). Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nature Neuroscience, 11(4), 423425. https://doi.org/10.1038/nn2061.CrossRefGoogle ScholarPubMed
Roelofs, K. (2017). Freeze for action: Neurobiological mechanisms in animal and human freezing. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1718), 20160206. https://doi.org/10.1098/rstb.2016.0206.CrossRefGoogle ScholarPubMed
Rorick, L. M., Finn, P. R., & Steinmetz, J. E. (2003). High-alcohol-drinking rats exhibit persistent freezing responses to discrete cues following Pavlovian fear conditioning. Pharmacology, Biochemistry, and Behavior, 76(2), 223230. https://doi.org/10.1016/j.pbb.2003.07.001.CrossRefGoogle ScholarPubMed
Ruffolo, G., Cifelli, P., Roseti, C., Thom, M., van Vliet, E. A., Limatola, C., … Palma, E. (2018). A novel GABAergic dysfunction in human Dravet syndrome. Epilepsia, 59(11), 21062117. https://doi.org/10.1111/epi.14574.CrossRefGoogle ScholarPubMed
Sachser, N., Hennessy, M. B., & Kaiser, S. (2011). Adaptive modulation of behavioural profiles by social stress during early phases of life and adolescence. Neuroscience and Biobehavioral Reviews, 35(7), 15181533. https://doi.org/10.1016/j.neubiorev.2010.09.002.CrossRefGoogle ScholarPubMed
Sales, A. J., Fogaça, M. V., Sartim, A. G., Pereira, V. S., Wegener, G., Guimarães, F. S., & Joca, S. (2019). Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Molecular Neurobiology, 56(2), 10701081. https://doi.org/10.1007/s12035-018-1143-4.CrossRefGoogle ScholarPubMed
Solomon, M. B. (2017). Evaluating social defeat as a model for psychopathology in adult female rodents. Journal of Neuroscience Research, 95(1-2), 763776. https://doi.org/10.1002/jnr.23971.CrossRefGoogle Scholar
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24(4), 417463. https://doi.org/10.1016/s0149-7634(00)00014-2.CrossRefGoogle ScholarPubMed
Spiga, S., Talani, G., Mulas, G., Licheri, V., Fois, G. R., Muggironi, G., … Diana, M. (2014). Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats. Proceedings of the National Academy of Sciences of the United States of America, 111(35), E3745E3754. https://doi.org/10.1073/pnas.1406768111.Google ScholarPubMed
Staples, M. C., Herman, M. A., Lockner, J. W., Avchalumov, Y., Kharidia, K. M., Janda, K. D., … Mandyam, C. D. (2021). Isoxazole-9 reduces enhanced fear responses and retrieval in ethanol-dependent male rats. Journal of Neuroscience Research, 99(11), 30473065. https://doi.org/10.1002/jnr.24932.CrossRefGoogle ScholarPubMed
Tang, J., Yang, C., Shi, M., & Chen, W. (2022). Activation of dopamine D2 receptors in the shell of nucleus accumbens triggers conditioned avoidance responses in rats. Behavioural Brain Research, 422, 113759. https://doi.org/10.1016/j.bbr.2022.113759.CrossRefGoogle ScholarPubMed
Thayer, J. F., Hall, M., Sollers, J. J. 3rd, & Fischer, J. E. (2006). Alcohol use, urinary cortisol, and heart rate variability in apparently healthy men: Evidence for impaired inhibitory control of the HPA axis in heavy drinkers. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 59(3), 244250. https://doi.org/10.1016/j.ijpsycho.2005.10.013.CrossRefGoogle ScholarPubMed
Tringali, G., Greco, M. C., Lisi, L., Pozzoli, G., & Navarra, P. (2012). Cortistatin modulates the expression and release of corticotrophin releasing hormone in rat brain. Comparison with somatostatin and octreotide. Peptides, 34(2), 353359. https://doi.org/10.1016/j.peptides.2012.02.004.CrossRefGoogle ScholarPubMed
Turner, P. V., Brabb, T., Pekow, C., & Vasbinder, M. A. (2011). Administration of substances to laboratory animals: Routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science: JAALAS, 50(5), 600613.Google ScholarPubMed
Varlinskaya, E. I., Truxell, E., & Spear, L. P. (2014). Chronic intermittent ethanol exposure during adolescence: Effects on social behavior and ethanol sensitivity in adulthood. Alcohol (Fayetteville, N.Y.), 48(5), 433444. https://doi.org/10.1016/j.alcohol.2014.01.012.CrossRefGoogle ScholarPubMed
Viudez-Martínez, A., García-Gutiérrez, M. S., & Manzanares, J. (2018a). Cannabidiol regulates the expression of hypothalamus–pituitary–adrenal axis-related genes in response to acute restraint stress. Journal of Psychopharmacology, 32(12), 13791384. https://doi.org/10.1177/0269881118805495.CrossRefGoogle ScholarPubMed
Viudez-Martínez, A., García-Gutiérrez, M. S., & Manzanares, J. (2020). Gender differences in the effects of cannabidiol on ethanol binge drinking in mice. Addiction Biology, 25(3), e12765. https://doi.org/10.1111/adb.12765.CrossRefGoogle ScholarPubMed
Viudez-Martínez, A., García-Gutiérrez, M. S., Medrano-Relinque, J., Navarrón, C. M., Navarrete, F., & Manzanares, J. (2019). Cannabidiol does not display drug abuse potential in mice behavior. Acta Pharmacologica Sinica, 40(3), 358364. https://doi.org/10.1038/s41401-018-0032-8.CrossRefGoogle Scholar
Viudez-Martínez, A., García-Gutiérrez, M. S., Navarrón, C. M., Morales-Calero, M. I., Navarrete, F., Torres-Suárez, A. I., & Manzanares, J. (2018b). Cannabidiol reduces ethanol consumption, motivation and relapse in mice. Addiction Biology, 23(1), 154164. https://doi.org/10.1111/adb.12495.CrossRefGoogle ScholarPubMed
Yoon, S., Piguel, N. H., Khalatyan, N., Dionisio, L. E., Savas, J. N., & Penzes, P. (2021). Homer1 promotes dendritic spine growth through ankyrin-G and its loss reshapes the synaptic proteome. Molecular Psychiatry, 26(6), 17751789. https://doi.org/10.1038/s41380-020-00991-1.CrossRefGoogle ScholarPubMed
Supplementary material: File

Brancato et al. supplementary material

Brancato et al. supplementary material

Download Brancato et al. supplementary material(File)
File 12.9 MB