Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-28T14:41:43.801Z Has data issue: false hasContentIssue false

Shared and distinct electroencephalogram microstate abnormalities across schizophrenia, bipolar disorder, and depression

Published online by Cambridge University Press:  13 May 2024

Rui Xue
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Xiaojing Li
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Wei Deng
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Chengqian Liang
Affiliation:
School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
Mingxia Chen
Affiliation:
School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
Jianning Chen
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Sugai Liang
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Wei Wei
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Yamin Zhang
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Hua Yu
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Yan Xu
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Wanjun Guo
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
Tao Li*
Affiliation:
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
*
Corresponding author: Tao Li; Email: [email protected]

Abstract

Background

Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear.

Methods

This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design.

Results

Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups.

Conclusions

Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreou, C., Faber, P. L., Leicht, G., Schoettle, D., Polomac, N., Hanganu-Opatz, I. L., … Mulert, C. (2014). Resting-state connectivity in the prodromal phase of schizophrenia: Insights from EEG microstates. Schizophrenia Research, 152(2–3), 513520. doi: 10.1016/j.schres.2013.12.008CrossRefGoogle ScholarPubMed
Baradits, M., Bitter, I., & Czobor, P. (2020). Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls. Psychiatry Research, 288, 112938. doi: 10.1016/j.psychres.2020.112938CrossRefGoogle ScholarPubMed
Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 11291159. doi: 10.1162/neco.1995.7.6.1129CrossRefGoogle ScholarPubMed
Biasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroencephalography. Current Biology, 29(3), R80r85. doi: 10.1016/j.cub.2018.11.052CrossRefGoogle ScholarPubMed
Bréchet, L., Brunet, D., Birot, G., Gruetter, R., Michel, C. M., & Jorge, J. (2019). Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage, 194, 8292. doi: 10.1016/j.neuroimage.2019.03.029CrossRefGoogle ScholarPubMed
Britz, J., Van De Ville, D., & Michel, C. M. (2010). BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage, 52(4), 11621170. doi: 10.1016/j.neuroimage.2010.02.052CrossRefGoogle ScholarPubMed
Canali, P., Sarasso, S., Rosanova, M., Casarotto, S., Sferrazza-Papa, G., Gosseries, O., … Benedetti, F. (2015). Shared reduction of oscillatory natural frequencies in bipolar disorder, major depressive disorder and schizophrenia. Journal of Affective Disorders, 184, 111115. doi: 10.1016/j.jad.2015.05.043CrossRefGoogle Scholar
Chen, P. H., Ku, H. L., Wang, J. K., Kang, J. H., & Hsu, T. Y. (2023). Electroencephalographic microstates are correlated with global functioning in schizophrenia but not in bipolar disorder. Clinical EEG and Neuroscience, 54(3), 215223. doi: 10.1177/15500594221098286CrossRefGoogle ScholarPubMed
Chu, C., Wang, X., Cai, L., Zhang, L., Wang, J., Liu, C., & Zhu, X. (2020). Spatiotemporal EEG microstate analysis in drug-free patients with Parkinson's disease. Neuroimage Clinical, 25, 102132. doi: 10.1016/j.nicl.2019.102132CrossRefGoogle ScholarPubMed
Cross-Disorder Group of the Psychiatric Genomics Consortium (2013). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet (London, England), 381(9875), 13711379. doi: 10.1016/s0140-6736(12)62129-1CrossRefGoogle Scholar
Custo, A., Van De Ville, D., Wells, W. M., Tomescu, M. I., Brunet, D., & Michel, C. M. (2017). Electroencephalographic resting-state networks: Source localization of microstates. Brain Connectivity, 7(10), 671682. doi: 10.1089/brain.2016.0476CrossRefGoogle ScholarPubMed
da Cruz, J. R., Favrod, O., Roinishvili, M., Chkonia, E., Brand, A., Mohr, C., … Herzog, M. H. (2020). EEG microstates are a candidate endophenotype for schizophrenia. Nature Communications, 11(1), 3089. doi: 10.1038/s41467-020-16914-1CrossRefGoogle ScholarPubMed
Damborská, A., Piguet, C., Aubry, J. M., Dayer, A. G., Michel, C. M., & Berchio, C. (2019). Altered electroencephalographic resting-state large-scale brain network dynamics in euthymic bipolar disorder patients. Frontiers in Psychiatry, 10, 826. doi: 10.3389/fpsyt.2019.00826CrossRefGoogle ScholarPubMed
de Bock, R., Mackintosh, A. J., Maier, F., Borgwardt, S., Riecher-Rössler, A., & Andreou, C. (2020). EEG microstates as biomarker for psychosis in ultra-high-risk patients. Translational Psychiatry, 10(1), 300. doi: 10.1038/s41398-020-00963-7CrossRefGoogle ScholarPubMed
Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely-Shamlo, N., Vankov, A., & Makeig, S. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing. Computational Intelligence and Neuroscience, 2011, 130714. doi: 10.1155/2011/130714CrossRefGoogle ScholarPubMed
Ferrarelli, F., Sarasso, S., Guller, Y., Riedner, B. A., Peterson, M. J., Bellesi, M., … Tononi, G. (2012). Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia. Archives of General Psychiatry, 69(8), 766774. doi: 10.1001/archgenpsychiatry.2012.147CrossRefGoogle ScholarPubMed
Gong, Q., Scarpazza, C., Dai, J., He, M., Xu, X., Shi, Y., … Mechelli, A. (2019). A transdiagnostic neuroanatomical signature of psychiatric illness. Neuropsychopharmacology, 44(5), 869875. doi: 10.1038/s41386-018-0175-9CrossRefGoogle ScholarPubMed
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., … Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, 267. doi: 10.3389/fnins.2013.00267CrossRefGoogle ScholarPubMed
He, Y., Yu, Q., Yang, T., Zhang, Y., Zhang, K., Jin, X., … Luo, X. (2021). Abnormalities in electroencephalographic microstates among adolescents with first episode major depressive disorder. Frontiers in Psychiatry, 12, 775156. doi: 10.3389/fpsyt.2021.775156CrossRefGoogle ScholarPubMed
Huang, Y., Wang, Y., Wang, H., Liu, Z., Yu, X., Yan, J., … Wu, Y. (2019). Prevalence of mental disorders in China: A cross-sectional epidemiological study. The Lancet. Psychiatry, 6(3), 211224. doi: 10.1016/s2215-0366(18)30511-xCrossRefGoogle Scholar
Kellough, J. L., Beevers, C. G., Ellis, A. J., & Wells, T. T. (2008). Time course of selective attention in clinically depressed young adults: An eye tracking study. Behaviour Research and Therapy, 46(11), 12381243. doi: 10.1016/j.brat.2008.07.004CrossRefGoogle ScholarPubMed
Khanna, A., Pascual-Leone, A., & Farzan, F. (2014). Reliability of resting-state microstate features in electroencephalography. PloS One, 9(12), e114163. doi: 10.1371/journal.pone.0114163CrossRefGoogle ScholarPubMed
Khanna, A., Pascual-Leone, A., Michel, C. M., & Farzan, F. (2015). Microstates in resting-state EEG: Current status and future directions. Neuroscience and Biobehavioral Reviews, 49, 105113. doi: 10.1016/j.neubiorev.2014.12.010CrossRefGoogle ScholarPubMed
Kim, K., Duc, N. T., Choi, M., & Lee, B. (2021). EEG microstate features for schizophrenia classification. PloS One, 16(5), e0251842. doi: 10.1371/journal.pone.0251842CrossRefGoogle ScholarPubMed
Lavoie, S., Polari, A. R., Goldstone, S., Nelson, B., & McGorry, P. D. (2019). Staging model in psychiatry: Review of the evolution of electroencephalography abnormalities in major psychiatric disorders. Early Intervention in Psychiatry, 13(6), 13191328. doi: 10.1111/eip.12792CrossRefGoogle ScholarPubMed
Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417441. doi: 10.1162/089976699300016719CrossRefGoogle ScholarPubMed
Lei, L., Liu, Z., Zhang, Y., Guo, M., Liu, P., Hu, X., … Zhang, K. (2022). EEG microstates as markers of major depressive disorder and predictors of response to SSRIs therapy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 116, 110514. doi: 10.1016/j.pnpbp.2022.110514CrossRefGoogle ScholarPubMed
Ma, Q., Tang, Y., Wang, F., Liao, X., Jiang, X., Wei, S., … Xia, M. (2020). Transdiagnostic dysfunctions in brain modules across patients with schizophrenia, bipolar disorder, and major depressive disorder: A connectome-based study. Schizophrenia Bulletin, 46(3), 699712. doi: 10.1093/schbul/sbz111CrossRefGoogle ScholarPubMed
Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage, 180(Pt B), 577593. doi: 10.1016/j.neuroimage.2017.11.062CrossRefGoogle ScholarPubMed
Minzenberg, M. J., Firl, A. J., Yoon, J. H., Gomes, G. C., Reinking, C., & Carter, C. S. (2010). Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology, 35(13), 25902599. doi: 10.1038/npp.2010.150CrossRefGoogle ScholarPubMed
Murphy, M., Whitton, A. E., Deccy, S., Ironside, M. L., Rutherford, A., Beltzer, M., … Pizzagalli, D. A. (2020). Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder. Neuropsychopharmacology, 45(12), 20302037. doi: 10.1038/s41386-020-0749-1CrossRefGoogle ScholarPubMed
Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., … Koenig, T. (2013). EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease. Clinical Neurophysiology, 124(6), 11061114. doi: 10.1016/j.clinph.2013.01.005CrossRefGoogle ScholarPubMed
Sanchez, A., Vazquez, C., Marker, C., LeMoult, J., & Joormann, J. (2013). Attentional disengagement predicts stress recovery in depression: An eye-tracking study. Journal of Abnormal Psychology, 122(2), 303313. doi: 10.1037/a0031529CrossRefGoogle ScholarPubMed
Schumacher, J., Peraza, L. R., Firbank, M., Thomas, A. J., Kaiser, M., Gallagher, P., … Taylor, J. P. (2019). Dysfunctional brain dynamics and their origin in Lewy body dementia. Brain, 142(6), 17671782. doi: 10.1093/brain/awz069CrossRefGoogle ScholarPubMed
Sha, Z., Xia, M., Lin, Q., Cao, M., Tang, Y., Xu, K., … He, Y. (2018). Meta-connectomic analysis reveals commonly disrupted functional architectures in network modules and connectors across brain disorders. Cerebral Cortex, 28(12), 41794194. doi: 10.1093/cercor/bhx273CrossRefGoogle ScholarPubMed
Sun, Q., Zhao, L., & Tan, L. (2022). Abnormalities of electroencephalography microstates in drug-naïve, first-episode schizophrenia. Frontiers in Psychiatry, 13, 853602. doi: 10.3389/fpsyt.2022.853602CrossRefGoogle ScholarPubMed
Sun, Q., Zhou, J., Guo, H., Gou, N., Lin, R., Huang, Y., … Wang, X. (2021). EEG microstates and its relationship with clinical symptoms in patients with schizophrenia. Frontiers in Psychiatry, 12, 761203. doi: 10.3389/fpsyt.2021.761203CrossRefGoogle ScholarPubMed
Uher, R., & Zwicker, A. (2017). Etiology in psychiatry: Embracing the reality of poly-gene-environmental causation of mental illness. World Psychiatry, 16(2), 121129. doi: 10.1002/wps.20436CrossRefGoogle ScholarPubMed
Vellante, F., Ferri, F., Baroni, G., Croce, P., Migliorati, D., Pettoruso, M., … Giannantonio, M. D. (2020). Euthymic bipolar disorder patients and EEG microstates: A neural signature of their abnormal self experience? Journal of Affective Disorders, 272, 326334. doi: 10.1016/j.jad.2020.03.175CrossRefGoogle ScholarPubMed
Vigod, S. N., & Kurdyak, P. A. (2019). A lifespan strategy to prevent adverse outcomes associated with psychiatric hospitalisation. The Lancet. Psychiatry, 6(7), 550551. doi: 10.1016/s2215-0366(19)30211-1CrossRefGoogle ScholarPubMed
Wang, F., Hujjaree, K., & Wang, X. (2021). Electroencephalographic microstates in schizophrenia and bipolar disorder. Frontiers in Psychiatry, 12, 638722. doi: 10.3389/fpsyt.2021.638722CrossRefGoogle ScholarPubMed
Wei, Y., Chang, M., Womer, F. Y., Zhou, Q., Yin, Z., Wei, S., … Wang, F. (2018). Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder. Journal of Affective Disorders, 236, 266273. doi: 10.1016/j.jad.2018.04.069CrossRefGoogle ScholarPubMed
Xia, M., Womer, F. Y., Chang, M., Zhu, Y., Zhou, Q., Edmiston, E. K., … Wang, F. (2019). Shared and distinct functional architectures of brain networks across psychiatric disorders. Schizophrenia Bulletin, 45(2), 450463. doi: 10.1093/schbul/sby046CrossRefGoogle ScholarPubMed
Yang, Y., Li, X., Cui, Y., Liu, K., Qu, H., Lu, Y., … Lv, L. (2022). Reduced gray matter volume in orbitofrontal cortex across schizophrenia, major depressive disorder, and bipolar disorder: A comparative imaging study. Frontiers in Neuroscience, 16, 919272. doi: 10.3389/fnins.2022.919272CrossRefGoogle ScholarPubMed
Yang, Y., Liu, S., Jiang, X., Yu, H., Ding, S., Lu, Y., … Lv, L. (2019). Common and specific functional activity features in schizophrenia, major depressive disorder, and bipolar disorder. Frontiers in Psychiatry, 10, 52. doi: 10.3389/fpsyt.2019.00052CrossRefGoogle ScholarPubMed
Yoshimura, M., Pascual-Marqui, R. D., Nishida, K., Kitaura, Y., Mii, H., Saito, Y., … Kinoshita, T. (2019). Hyperactivation of the frontal control network revealed by symptom provocation in obsessive-compulsive disorder using EEG microstate and sLORETA analyses. Neuropsychobiology, 77(4), 176185. doi: 10.1159/000491719CrossRefGoogle ScholarPubMed