Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T15:03:47.874Z Has data issue: false hasContentIssue false

Selective effects of ECT on hypothalamic—pituitary activity

Published online by Cambridge University Press:  09 July 2009

Lawrence J. Whalley*
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
John M. Eagles
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
Geoffrey M. R. Bowler
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
John G. Bennie
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
Heinz R. Dick
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
Ralph J. McGuire
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
George Fink
Affiliation:
MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
*
1Address for correspondence: Dr L. J. Whalley, University Department of Psychiatry, (Royal Edinburgh Hospital), Morningside Park, Edinburgh EH10 5HF.

Synopsis

The hypothesis that ECT produces selective effects on hypothalamic–pituitary activity was investigated by determining the effect of ECT on pituitary hormone release in nine depressed patients. After ECT there were massive and rapid increases in the plasma concentrations of nicotine-and oestrogen-stimulated neurophysin (NSN and ESN), prolactin (PRL) and adrenocorticotropin (ACTH), smaller increases in plasma luteinizing hormone (LH) and cortisol, a significant decrease in plasma growth hormone (GH) concentration but no change in plasma thyrotropin (TSH). There was significant attenuation of PRL responses with repeated ECT. The hormonal responses to ECT cannot simply be attributed to stress, since a similar pattern of increases in plasma hormone concentrations did not occur in psychologically normal patients in whom plasma hormone concentrations were measured during induction of anaesthesia and abdominal incision for cholecystectomy. Analysis of these hormonal responses in terms of the knowledge available on the neurotransmitter control of pituitary hormone release suggests that some of these hormonal responses to ECT may be mediated by the activation of serotonergic neurones, while others are probadly due to direct stimulation of the neuroendocrine neurones themselves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, K. & Hiroshige, T. (1974). Changes in plasma corticosterone and hypothalamic CRF levels following intraventricular injection or drug-induced changes of brain biogenic amines in the rat. Neuroendocrinology 14, 198211.Google Scholar
Alexopoulos, G. S., Inturris, C. E., Lipman, R., Frances, R., Haycox, J., Dougherty, J. H. & Rossier, J. (1983). Plasma immunoreactive β-endorphin levels in depression: effects of electroconvulsive therapy. Archives of General Psychiatry 40, 181183.CrossRefGoogle ScholarPubMed
Alllen, J. P., Denney, D., Hendall, J. W. & Blachly, P. (1974). Corticotrophin release during ECT in man. American Journal of Psychiatry 131, 1255–1228.Google Scholar
Aperia, B., Thoren, M., Zettergren, M. & Wetterberg, L. (1984). Plasma pattern of adrenocorticotrophin and cortisol during electroconvulsive therapy in patients with major depressive illness. Acta psychiatrica Scandinavica 70, 361369.CrossRefGoogle ScholarPubMed
Arato, M., Eroos, A., Kurcz, M., Vermes, I. & Fekete, M. (1980). Studies on the prolactin response induced by electroconvulsive therapy in schizophrenics. Acta Psychiatrica Scandinavica 61, 239244.CrossRefGoogle ScholarPubMed
Balldin, J. (1982). Factors influencing prolactin release induced by electro-convulsive therapy. Acta Psychiatrica Scandinavica 65, 365369.Google Scholar
Barraclough, C. A. & Wise, P. M. (1982). The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle stimulating hormone secretion. Endocrine Reviews 3, 91119.CrossRefGoogle ScholarPubMed
Brar, A. K., Fink, G., Maletti, M. & Rostene, W. (1985). Vasoactive intestinal peptide in rat hypophysial portal blood: effects of electrical stimulation of various brain areas, the oestrogen cycle and anaesthetics. Journal of Endocrinology 106, 275328.CrossRefGoogle Scholar
Bruni, J. F., Hawkins, R. L. & Yen, S. S. C. (1982). Serotonergic mechanism in the control of β-endorphin and ACTH release in male rats. Life Sciences 30, 12471254.CrossRefGoogle ScholarPubMed
Buckingham, J. (1980). Corticotrophin releasing factor. Pharmacological Reviews 31, 253275.Google Scholar
Buckingham, J. C. & Hodges, J. R. (1979). Hypothalamic receptors influencing the secretion of corticotrophin releasing hormone in the rat. Journal of Physiology 290, 421423.CrossRefGoogle ScholarPubMed
Casanueva, F. F., Villanueva, L., Cabranes, J. A., Cabezas-Cerrato, J. & Fernandez-Cruz, A. (1984). Cholinergic mediation of growth hormone secretion elicited by arginine, clonidine, and physical exercise in man. Journal of Clinical Endocrinology and Metabolism 59, 526530.CrossRefGoogle ScholarPubMed
Charney, D. S., Menkes, D. B. & Heninger, G. R. (1981). Receptor sensitivity and the mechanism of action of antidepressant treatment. Archives of General Psychiatry 38, 11601180.CrossRefGoogle ScholarPubMed
Charney, D. S., Heninger, G. R. & Sternberg, D. E. (1984). Effect of mianserin on β-adrenergic receptors. British Journal of Psychiatry 144, 407416.CrossRefGoogle Scholar
Checkley, S. A. & Meldrum, B. S. (1982). Studies on the mechanism of the antidepressant action of electroconvulsive therapy. In Neuropeprides Basic and Clinical Aspects, (ed. Fink, G. &Whalley, L. J.), pp. 167181. Churchill Livingston: Edinburgh.Google Scholar
Clarke, G., Wood, P., Merrick, L. & Lincoln, D. W. (1979). Opiate inhibition of peptide release from the neurohumoral terminals of hypothalamic neurones. Nature 282, 746748.CrossRefGoogle ScholarPubMed
Cross, B. A., Dyball, R. E. J., Dyer, R. G., Jones, C. W., Lincoln, D. W., Morris, J. F. & Pickering, B. T. (1975) Endocrine neurons. Recent Progress in Hormone Research 31, 243286.Google ScholarPubMed
Cusan, L., Dupont, A., Kledzik, G. S., Labrie, F., Coy, D. H. & Schally, A. V. (1977). Potent prolactin and growth hormone releasing activity of more analogues of Met-enkephalin. Nature 378, 544547.CrossRefGoogle Scholar
Deakin, J. F. W., Owen, F., Cross, A. J. & Dashwood, M J.(1981). Studies on possible mechanisms of action of ECT. Psychopharmacology 73, 345349.CrossRefGoogle Scholar
Deakin, J. F. W., Ferrier, I. N., Crow, T. J., Johnstone, E. C. & Lawler, P. (1983). Effects of ECT on pituitary hormone release: relationship to seizure, clinical variables and outcome. British Journal of Psychiatry. 143, 618624.CrossRefGoogle ScholarPubMed
Delitalia, G., Masala, A., Rosati, G., Aiello, I. & Agnetti, V. (1977). Effects of electroconvulsive therapy (electro shock) on plasma ACTH, GH, LH, FSH, TSH and 11-OH CS in variance with mental disorders. Panminerva Medica (Torino) 19, 237243.Google Scholar
Fehm, H. L., Voigt, K. H., Lang, R. E. & Pfeiffer, E. F. (1980). Effects of neurotransmitters on the release of corticotropin releasing hormone (CRH) by rat hypothalmic tissue in vitro. Experimental Brain Research 39, 229234.CrossRefGoogle Scholar
Fink, G. (1986). The endocrine control of ovulation. Science Progress 70, 403423.Google ScholarPubMed
Fink, G. & Geffen, L. B. (1978). The hypothalamo-hypophysial system: model for central peptidergic and monoaminergic transmission. In International Review of Physiology, Neurophysiology III. Vol. 17 (ed. Porter, R.), pp. 148. University Park Press: Baltimore.Google Scholar
Gillies, G. E., Linton, E. A. & Lowry, P. J. (1982). Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299, 355357.CrossRefGoogle ScholarPubMed
Grahame-Smith, D. G., Green, A. R. & Costain, D. W. (1978).Mechanism of the antidepressant action of ECT. Lancet i, 254256.CrossRefGoogle Scholar
Green, A. R. & Deakin, J. F. W. (1980). Brain noradrenaline depletion prevents ECS induced enhancement of serotonin and dopamine mediated behaviour. Nature 285, 232233.CrossRefGoogle ScholarPubMed
Grosvenor, C. E. & Mena, F. (1980). Evidence that thyrotropin-releasing hormone and a hypothalamic prolactin-releasing factor may function in the release of prolactin in the lactating rat. Endocrinology 107, 863868.CrossRefGoogle Scholar
Haldar, J. & Sawyer, W. H. (1978). Inhibition of oxytocin release by morphine and its analogues. Proceedings of the Society for Experimental Biology and Medicine (New York) 157, 476480.CrossRefGoogle Scholar
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry 23, 5662.CrossRefGoogle ScholarPubMed
Haracz, J. L., Bloom, A. S., Wang, R. I. H. & Tseng, L.-F. (1981). Effect of intraventricular β-endorphin and morphine on hypothalamic-pituitary-adrenal activity and the release of pituitary β-endorphin. Neuroendocrinology 33, 170175.CrossRefGoogle ScholarPubMed
Hary, L., Dupouy, J. P. & Chatelain, A. (1984). Effect of norepinephrine on the pituitary adrenocorticotrophic activation by ether stress and in the in vitro release of ACTH by the adenohypophysis of male and female newborn rats. Neuroendocrinology 39, 105113.CrossRefGoogle ScholarPubMed
Holmes, M. C., Di Renzo, G., Beckford, U., Gillham, B. & Jones, M. T. (1982). Role of serotonin in the control of secretion of corticotrophin releasing factor. Journal of Endocrinology 93, 151160.CrossRefGoogle ScholarPubMed
Horn, A. M. & Fink, G. (1985 a). Effects of 5-hydroxytryptamine uptake blockers on the release of LH and prolactin in several different experimental steroid models in the rat. Journal of Endocrinology 104, 397406.CrossRefGoogle ScholarPubMed
Horn, A. M. & Fink, G. (1985 b). Parachlorophenylalanine blocks the spontaneous pro-oestrous surge of prolactin as well as LH and affects the secretion of oestradiol-17β. Journal of Endocrinology 105, 415418.CrossRefGoogle Scholar
Horn, A. M., Robinson, I. C. A. F. & Fink, G. (1985). Oxytocin and vasopressin in rat hypophysial portal blood: experimental studies in normal and Brattleboro rats. Journal of Endocrinology 104, 211224.CrossRefGoogle ScholarPubMed
Kakucska, I. & Makara, G. B. (1983). Various putative neurotransmitters affect growth hormone (GH) release in rats with anterolateral hypothalamic deafferentation of the medial basal hypothalamus: evidence for mediation by a GH-releasing factor. Endocrinology 113, 318323.CrossRefGoogle ScholarPubMed
Kawa, A., Taniguchi, Y., Mizuguchi, I., Ryu, S., Ariyama, T., Kamisaki, T., Koreeda, F. & Kanehisa, T. (1978). Effect of intraventricular administration of noradrenaline and dopamine on the levels of corticosterone in rats and denervation hypersensitivity resulting from intraventricular administration of 6-hydroxydopamine. Life Sciences 23, 991998.CrossRefGoogle ScholarPubMed
Lapin, I. P. & Oxenkrug, G. F. (1969). Intensification of the central serotonergic processes as a possible determinant of the thymoleptic effect. Lancet i, 132136.CrossRefGoogle Scholar
Leong, D. A., Frawley, L. S. & Neill, J. D. (1983). Neuroendocrine control of prolactin secretion. Annual Review of Physiology 45, 109127.CrossRefGoogle ScholarPubMed
Lincoln, D. W. & Russell, J. A. On the electrophysiology of magnocellular oxytocin neurones. In: Oxytocin; Clinical and Laboratory Aspects (ed. Amico, J. A. & Robinson, A. G.), pp. 5396. Excerpta Medica, International Congress series, Elsevier: Amsterdam.Google Scholar
Linnoila, M., Karoum, F., Rosenthal, N., Potter, W. Z. (1983). Electro-convulsive treatment and lithium carbonate. Archives of General Psychiatry 40, 677680.CrossRefGoogle Scholar
Loosen, P. T. & Prange, A. J. Jr. (1982). Serum thyrotropin response to thyrotropin-releasing hormone in psychiatric patients: a review. American Journal of Psychiatry 139, 405416.Google ScholarPubMed
Mannisto, P., Ranta, T. & Tuomisto, J. (1979). Dual action of adrenergic system on the regulation of thyrotrophin secretion in the male rat. Acta Endocrinology 90, 249258.Google ScholarPubMed
Meco, G., Cassacchia, M., Carchedi, F., Falaschi, P., Rocco, P. & Frajese, J. (1978). Prolactin response to repeated electroconvulsive therapy in acute schizophrenia. The Lancet ii, 999.CrossRefGoogle Scholar
Mitchell, R., Grieve, G., Dow, R. & Fink, G. (1983).Endogenous GABA receptor ligands in hypophysial portal blood. Neuroendocrinology, 37, 169176.CrossRefGoogle ScholarPubMed
Modigh, K. (1976). Long-term effects of electroconvulsive shock therapy on synthesis, turnover and uptake of brain monoamines. Psychopharmacology 49, 179185.CrossRefGoogle ScholarPubMed
Nakai, Y., Imura, H., Yoshimi, T. & Matsukura, S. (1973). Adrenergic control mechanism for ACTH secretion in man. Acta Endocrinologica 74, 263270.Google ScholarPubMed
O'Dea, J., Gould, D., Hallberg, M. & Wieland, R. (1978). Prolactin changes during electro-convulsive therapy. American Journal of Psychiatry 135, 609611.Google Scholar
Ohman, R., Balldin, J., Walinder, J., Walllin, L. & Abrahamson, L. (1976). Prolactin response to electroconvlusive therapy. Lancet ii, 936937.CrossRefGoogle Scholar
Raskind, M., Orenstein, H. & Weitzman, R. E. (1979). Vasopressin in depression. The Lancet i, 164.CrossRefGoogle Scholar
Rivier, C. & Vale, W. (1983). Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology 113, 939942.CrossRefGoogle ScholarPubMed
Sarkar, D. K., Gottschall, P. E., Meites, J., Horn, A., Dow, R. C., Fink, G. & Cuello, A. C. (1983). Uptake and release of [3H] dopamine by the median eminence; eivdence for presynaptic dopaminergic receptors and for dopaminergic feedback inhibition. Neuroscience 10, 821830.CrossRefGoogle Scholar
Schwartz, C. & Abrams, R. (1984). Prolactin levels after ECT. British Journal of Psychiatry 144, 643645.CrossRefGoogle Scholar
Scott, A. I. F., Whalley, L. J., Bennie, J. & Bowler, G. (1986). Oestrogen-stimulated neurophysin and outcome after electroconvulsive therapy. The Lancet i, 14111414.CrossRefGoogle Scholar
Sklar, A. H. & Schreir, R. W. (1983). Central nervous system mediators of vasopressin release. Physiological Reviews 63, 12431280.CrossRefGoogle ScholarPubMed
Sorensen, P. S., Hammer, M. & Bolwig, T. G. (1982). Vasopressin release during electro-convulsive therapy. Psychoneuroendocrinology 7, 303308.CrossRefGoogle Scholar
Spinedi, E. & Negro-Vilar, A. (1983). Serotonin and adrenocorticotropin (ACTH) release: direct effect at the anterior pituitary level and potentiation of arginine vasopressin-induced ATCH release. Endocrinology 112, 12171223.CrossRefGoogle Scholar
Steiner, R. A., Illner, P., Rolfs, A. D., Toivola, P. T. K. & Gale, C. C. (1978). Noradrenergic and dopaminergic regulation of GH and prolactin in baboons. Neuroendocrinology 26, 1531.CrossRefGoogle ScholarPubMed
Sulser, F., Vetulani, J. & Mobley, P. L. (1978). Mode of action of antidepressant drugs. Biochemical Pharmacology 27, 257261.CrossRefGoogle ScholarPubMed
Tuomisto, J. & Mannisto, p. (1985). Neurotransmitter regulation of anterior pituitary hormones. Pharmacological Reviews 37, 249332.Google ScholarPubMed
Vale, W., Spiess, J., Rivier, C. & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates the secretion of corticotropin and β-endorphin. Science 213, 13941397.CrossRefGoogle ScholarPubMed
van Loon, G. R., Scapagnini, V., Cohen, R. & Ganong, W. F.(1971). Effect of intraventricular administration of adrenergic drugs on the adrenal venous 17-hydroxycorticosteroid response to surgical stress in the dog. Neuroendocrinology 8, 257272.CrossRefGoogle ScholarPubMed
van Praag, H. M. (1982). Neurotransmitters and CNS disease: depression. Lancet ii, 12591264.CrossRefGoogle Scholar
Vetulani, J. & Sulser, F. (1975). Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 257, 495496.CrossRefGoogle ScholarPubMed
Weiner, R. I. & Ganong, W. S. (1978). Role of brain monoamines and histamine in regulation of anterior pituitary secretion. Physiological Reviews 58, 905976.CrossRefGoogle ScholarPubMed
Whalley, L. J., Dick, H., Watts, A. G., Christie, J. E., Rosie, R., Levy, G., Sheward, W. J. & Fink, G. (1982). Immediate increases in plasma prolactin and neurophysin but not other hormones after electroconvulsive therapy. Lancet ii, 10641067.CrossRefGoogle Scholar
Winer, B. J. (1971). Statistical Principles in Experimental Design, pp.514599. McGraw Hill: New York.Google Scholar