Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T17:09:01.460Z Has data issue: false hasContentIssue false

Revisiting reward impairments in schizophrenia spectrum disorders: a systematic review and meta-analysis for neuroimaging findings

Published online by Cambridge University Press:  30 March 2023

Xuan Wang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
Yinghao Zhang
Affiliation:
Division of Psychology and Language Sciences, University College London, London, UK
Jia Huang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
Yi Wang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
Yanzhe Niu
Affiliation:
Department of Psychology, University of California, San Diego, La Jolla, USA
Simon S. Y. Lui
Affiliation:
Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
Li Hui
Affiliation:
Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, Jiangsu, China
Raymond C. K. Chan*
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
*
Author for correspondence: Raymond C. K. Chan, E-mail: [email protected]

Abstract

Background

Abnormal reward functioning is central to anhedonia and amotivation symptoms of schizophrenia (SCZ). Reward processing encompasses a series of psychological components. This systematic review and meta-analysis examined the brain dysfunction related to reward processing of individuals with SCZ spectrum disorders and risks, covering multiple reward components.

Methods

After a systematic literature search, 37 neuroimaging studies were identified and divided into four groups based on their target psychology components (i.e. reward anticipation, reward consumption, reward learning, effort computation). Whole-brain Seed-based d Mapping (SDM) meta-analyses were conducted for all included studies and each component.

Results

The meta-analysis for all reward-related studies revealed reduced functional activation across the SCZ spectrum in the striatum, orbital frontal cortex, cingulate cortex, and cerebellar areas. Meanwhile, distinct abnormal patterns were found for reward anticipation (decreased activation of the cingulate cortex and striatum), reward consumption (decreased activation of cerebellum IV/V areas, insula and inferior frontal gyri), and reward learning processing (decreased activation of the striatum, thalamus, cerebellar Crus I, cingulate cortex, orbitofrontal cortex, and parietal and occipital areas). Lastly, our qualitative review suggested that decreased activation of the ventral striatum and anterior cingulate cortex was also involved in effort computation.

Conclusions

These results provide deep insights on the component-based neuro-psychopathological mechanisms for anhedonia and amotivation symptoms of the SCZ spectrum.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albajes-Eizagirre, A., Solanes, A., Fullana, M. A., Ioannidis, J. P. A., Fusar-Poli, P., Torrent, C., … Radua, J. (2019). Meta-analysis of voxel-based neuroimaging studies using seed-based d mapping with permutation of subject images (SDM-PSI). JoVE (Journal of Visualized Experiments), (153), e59841. https://doi.org/10.3791/59841.Google ScholarPubMed
Andreasen, N. C. (1999). A unitary model of schizophrenia: Bleuler's ‘fragmented phrene’ as schizencephaly. Archives of General Psychiatry. 56(9), 781787. https://doi.org/10.1001/archpsyc.56.9.781CrossRefGoogle ScholarPubMed
Andreasen, N. C., Paradiso, S., & O'Leary, D. S. (1998). ‘Cognitive dysmetria’ as an integrative theory of schizophrenia: A dysfunction in cortical subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24(2), 203218. https://doi.org/10.1093/oxfordjournals.schbul.a033321CrossRefGoogle ScholarPubMed
Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64(2), 8188. https://doi.org/10.1016/j.biopsych.2008.01.003CrossRefGoogle ScholarPubMed
*Avsar, K. B., Weller, R. E., Cox, J. E., Reid, M. A., White, D. M., & Lahti, A. C. (2013). An fMRI investigation of delay discounting in patients with schizophrenia. Brain and Behavior, 3(4), 384401. https://doi.org/10.1002/brb3.135CrossRefGoogle ScholarPubMed
Balleine, B. W. (2005). Neural bases of food-seeking: Affect, arousal and reward in corticostriatolimbic circuits. Physiology & Behavior, 86(5), 717730. https://doi.org/10.1016/j.physbeh.2005.08.061CrossRefGoogle ScholarPubMed
Barch, D. M., & Dowd, E. C. (2010). Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36(5), 919934. https://doi.org/10.1093/schbul/sbq068CrossRefGoogle ScholarPubMed
Barch, D. M., Pagliaccio, D., & Luking, K. (2016). Mechanisms underlying motivational deficits in psychopathology: Similarities and differences in depression and schizophrenia. In Simpson, E. H. & Balsam, P. D. (Eds.), Behavioral neuroscience of motivation (pp. 411449). Cham: Springer International Publishing. https://doi.org/10.1007/7854_2015_376Google Scholar
Barch, D. M., Treadway, M. T., & Schoen, N. (2014). Effort, anhedonia, and function in schizophrenia: Reduced effort allocation predicts amotivation and functional impairment. Journal of Abnormal Psychology, 123(2), 387397. https://doi.org/10.1037/a0036299CrossRefGoogle ScholarPubMed
Baskin-Sommers, A. R., & Foti, D. (2015). Abnormal reward functioning across substance use disorders and major depressive disorder: Considering reward as a transdiagnostic mechanism. International Journal of Psychophysiology, 98(2), 227239. http://dx.doi.org/10.1016/j.ijpsycho.2015.01.011.CrossRefGoogle ScholarPubMed
Bernard, J. A., & Mittal, V. A. (2015). Dysfunctional activation of the cerebellum in schizophrenia: A functional neuroimaging meta-analysis. Clinical Psychological Science, 3(4), 545566. https://doi.org/10.1177/2167702614542463CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309369. https://doi.org/10.1016/s0165-0173(98)00019-8CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507513. https://doi.org/10.1016/S0166-2236(03)00233-9CrossRefGoogle ScholarPubMed
Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 6573. https://doi.org/10.1016/j.coph.2008.12.014CrossRefGoogle ScholarPubMed
Borda, J. P., & Sass, L. A. (2015). Phenomenology and neurobiology of self disorder in schizophrenia: Primary factors. Schizophrenia Research, 169(1), 464473. https://doi.org/10.1016/j.schres.2015.09.024CrossRefGoogle ScholarPubMed
Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241254. https://doi.org/10.1016/j.tics.2013.03.003CrossRefGoogle ScholarPubMed
Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Reviews. Neuroscience, 19(6), 338350. https://doi.org/10.1038/s41583-018-0002-7CrossRefGoogle Scholar
Brady, R. O., Gonsalvez, I., Lee, I., Öngür, D., Seidman, L. J., Schmahmann, J. D., … Halko, M. A. (2019). Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. American Journal of Psychiatry, 176(7), 512520. https://doi.org/10.1176/appi.ajp.2018.18040429CrossRefGoogle ScholarPubMed
Brewer, J., Garrison, K., & Whitfield-Gabrieli, S. (2013). What about the ‘Self’ is processed in the posterior cingulate cortex? Frontiers in Human Neuroscience, 7, 647. https://doi.org/10.3389/fnhum.2013.00647.CrossRefGoogle ScholarPubMed
Cai, X.-L., Wang, Y.-M., Wang, Y., Zhou, H.-Y., Huang, J., Wang, Y., … Chan, R. C. K. (2021). Neurological soft signs are associated with altered cerebellar-cerebral functional connectivity in schizophrenia. Schizophrenia Bulletin, 47(5), 14521462. https://doi.org/10.1093/schbul/sbaa200CrossRefGoogle ScholarPubMed
Cao, H., Wei, X., Zhang, W., Xiao, Y., Zeng, J., Sweeney, J., … Lui, S. (2021). Cerebello-thalamo-cortical hyperconnectivity classifies patients and predicts long-term treatment outcome in first-episode schizophrenia. Biological Psychiatry, 89(9), S83. https://doi.org/10.1016/j.biopsych.2021.02.221CrossRefGoogle Scholar
Carta, I., Chen, C. H., Schott, A. L., Dorizan, S., & Khodakhah, K. (2019). Cerebellar modulation of the reward circuitry and social behavior. Science, 363(6424), eaav0581. https://doi.org/10.1126/science.aav0581.CrossRefGoogle ScholarPubMed
*Catalucci, A., Mazza, M., Ciutti, E., Caulo, M., Pollice, R., Roncone, R., … Gallucci, M. (2011). Neuronal basis of haedonic appraisal in early onset schizophrenia: FMRI investigation. The Neuroradiology Journal, 24(2), 264270. https://doi.org/10.1177/197140091102400216CrossRefGoogle ScholarPubMed
Chan, R. C., Wang, L., & Lui, S. S. Y. (2022). Theories and models of negative symptoms in schizophrenia and clinical implications. Nature Reviews Psychology, 1(8), 454467. https://doi.org/10.1038/s44159-022-00065-9.CrossRefGoogle Scholar
Chan, R. C., Wang, Y., Huang, J., Shi, Y., Wang, Y., Hong, X., … Kring, A. M. (2010). Anticipatory and consummatory components of the experience of pleasure in schizophrenia: Cross-cultural validation and extension. Psychiatry Research, 175(1-2), 181183. https://doi.org/10.1016/j.psychres.2009.01.020CrossRefGoogle ScholarPubMed
Charlson, F. J., Ferrari, A. J., Santomauro, D. F., Diminic, S., Stockings, E., Scott, J. G., … Whiteford, H. A. (2018). Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophrenia Bulletin, 44(6), 11951203. https://doi.org/10.1093/schbul/sby058CrossRefGoogle ScholarPubMed
Chase, H. W., Loriemi, P., Wensing, T., Eickhoff, S. B., & Nickl-Jockschat, T. (2018). Meta-analytic evidence for altered mesolimbic responses to reward in schizophrenia. Human Brain Mapping, 39(7), 29172928. https://doi.org/10.1002/hbm.24049CrossRefGoogle ScholarPubMed
Chavanne, A. V., & Robinson, O. J. (2021). The overlapping neurobiology of induced and pathological anxiety: A meta-analysis of functional neural activation. American Journal of Psychiatry, 178(2), 156164. https://doi.org/10.1176/appi.ajp.2020.19111153CrossRefGoogle ScholarPubMed
*Choi, S.-H., Lee, H., Ku, J., Yoon, K. J., & Kim, J.-J. (2014). Neural basis of anhedonia as a failure to predict pleasantness in schizophrenia. World Journal of Biological Psychiatry, 15(7), 525533. https://doi.org/10.3109/15622975.2013.819121CrossRefGoogle ScholarPubMed
Chudasama, Y., Daniels, T. E., Gorrin, D. P., Rhodes, S. E. V., Rudebeck, P. H., & Murray, E. A. (2013). The role of the anterior cingulate cortex in choices based on reward value and reward contingency. Cerebral Cortex, 23(12), 28842898. https://doi.org/10.1093/cercor/bhs266CrossRefGoogle ScholarPubMed
*Chung, Y. S., & Barch, D. M. (2016). Frontal-striatum dysfunction during reward processing: Relationships to amotivation in schizophrenia. Journal of Abnormal Psychology, 125(3), 453469. https://doi.org/10.1037/abn0000137CrossRefGoogle ScholarPubMed
*Crespo-Facorro, B., Paradiso, S., Andreasen, N. C., O'Leary, D. S., Watkins, G. L., Ponto, L. L. B., & Hichwa, R. D. (2001). Neural mechanisms of anhedonia in schizophrenia – A PET study of response to unpleasant and pleasant odors. JMAM – Journal of the American Medical Association, 286(4), 427435. https://doi.org/10.1001/jama.286.4.427CrossRefGoogle ScholarPubMed
*Culbreth, A. J., Gold, J. M., Cools, R., & Barch, D. M. (2016). Impaired activation in cognitive control regions predicts reversal learning in schizophrenia. Schizophrenia Bulletin, 42(2), 484493. https://doi.org/10.1093/schbul/sbv075CrossRefGoogle ScholarPubMed
Culbreth, A. J., Moran, E. K., & Barch, D. M. (2018). Effort-based decision-making in schizophrenia. Current Opinion in Behavioral Sciences, 22, 16. https://doi.org/10.1016/j.cobeha.2017.12.003CrossRefGoogle ScholarPubMed
Cuthbert, B. N. (2014). The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13(1), 2835. https://doi.org/10.1002/wps.20087CrossRefGoogle ScholarPubMed
*da Silva Alves, F., Bakker, G., Schmitz, N., Abeling, N., Hasler, G., van der Meer, J., … van Amelsvoort, T. (2013). Dopaminergic modulation of the reward system in schizophrenia: A placebo-controlled dopamine depletion fMRI study. European Neuropsychopharmacology, 23(11), 15771586. https://doi.org/10.1016/j.euroneuro.2013.06.008CrossRefGoogle ScholarPubMed
Davis, K., Kahn, R., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia – A review and reconceptualization. American Journal of Psychiatry, 148(11), 14741486.Google ScholarPubMed
*de Leeuw, M., Kahn, R. S., & Vink, M. (2015). Fronto-striatal dysfunction during reward processing in unaffected siblings of schizophrenia patients. Schizophrenia Bulletin, 41(1), 94103. https://doi.org/10.1093/schbul/sbu153CrossRefGoogle ScholarPubMed
Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104(1), 7088. https://doi.org/10.1196/annals.1390.002CrossRefGoogle ScholarPubMed
Dichter, G. S., Damiano, C. A., & Allen, J. A. (2012). Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: Animal models and clinical findings. Journal of Neurodevelopmental Disorders, 4(1), 19. https://doi.org/10.1186/1866-1955-4-19CrossRefGoogle ScholarPubMed
Dolan, R. J., Fletcher, P., Frith, C. D., Friston, K. J., Frackowiak, R. S. J., & Grasby, P. M. (1995). Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature, 378(6553), 180182. https://doi.org/10.1038/378180a0CrossRefGoogle ScholarPubMed
*Dowd, E. C., & Barch, D. M. (2012). Pavlovian reward prediction and receipt in schizophrenia: Relationship to anhedonia. PLoS ONE, 7(5), e35622. https://doi.org/10.1371/journal.pone.0035622CrossRefGoogle ScholarPubMed
*Dowd, E. C., Frank, M. J., Collins, A., Gold, J. M., & Barch, D. M. (2016). Probabilistic reinforcement learning in patients with schizophrenia: Relationships to anhedonia and avolition. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 1(5), 460473.CrossRefGoogle ScholarPubMed
Du, J., Rolls, E. T., Cheng, W., Li, Y., Gong, W., Qiu, J., & Feng, J. (2020). Functional connectivity of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal gyrus in humans. Cortex, 123, 185199. https://doi.org/10.1016/j.cortex.2019.10.012CrossRefGoogle ScholarPubMed
Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical Research Ed.), 315(7109), 629634. https://doi.org/10.1136/bmj.315.7109.629CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 8593. https://doi.org/10.1016/j.tics.2010.11.004CrossRefGoogle ScholarPubMed
Fervaha, G., Foussias, G., Agid, O., & Remington, G. (2013). Amotivation and functional outcomes in early schizophrenia. Psychiatry research, 210(2), 665668. https://doi.org/10.1016/j.psychres.2013.07.024CrossRefGoogle ScholarPubMed
Frances, A., First, M. B., & Pincus, H. A. (1995). DSM-IV guidebook (pp. x, 501). Arlington, VA, US: American Psychiatric Association.Google Scholar
Fusar-Poli, P., & Meyer-Lindenberg, A. (2013). Striatal presynaptic dopamine in schizophrenia, part II: Meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophrenia Bulletin, 39(1), 3342. https://doi.org/10.1093/schbul/sbr180CrossRefGoogle Scholar
Gard, D. E., Kring, A. M., Gard, M. G., Horan, W. P., & Green, M. F. (2007). Anhedonia in schizophrenia: Distinctions between anticipatory and consummatory pleasure. Schizophrenia Research, 93(1–3), 253260. https://doi.org/10.1016/j.schres.2007.03.008CrossRefGoogle ScholarPubMed
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. The Lancet, 392(10159), 17891858. https://doi.org/10.1016/S0140-6736(18)32279-7CrossRefGoogle Scholar
Gold, J. M., Waltz, J. A., Matveeva, T. M., Kasanova, Z., Strauss, G. P., Herbener, E. S., … Frank, M. J. (2012). Negative symptoms in schizophrenia result from a failure to represent the expected value of rewards: Behavioral and computational modeling evidence. Archives of General Psychiatry, 69(2), 129138. https://doi.org/10.1001/archgenpsychiatry.2011.1269CrossRefGoogle ScholarPubMed
Gold, J. M., Waltz, J. A., Prentice, K. J., Morris, S. E., & Heerey, E. A. (2008). Reward processing in schizophrenia: A deficit in the representation of value. Schizophrenia Bulletin, 34(5), 835847. https://doi.org/10.1093/schbul/sbn068CrossRefGoogle ScholarPubMed
*Gradin, V. B., Kumar, P., Waiter, G., Ahearn, T., Stickle, C., Milders, M., … Steele, J. D. (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Brain, 134, 17511764. https://doi.org/10.1093/brain/awr059CrossRefGoogle ScholarPubMed
*Gradin, V. B., Waiter, G., O'Connor, A., Romaniuk, L., Stickle, C., Matthews, K., … Steele, J. D. (2013). Salience network-midbrain dysconnectivity and blunted reward signals in schizophrenia. Psychiatry Research-Neuroimaging, 211(2), 104111. https://doi.org/10.1016/j.pscychresns.2012.06.003CrossRefGoogle ScholarPubMed
*Grimm, O., Heinz, A., Walter, H., Kirsch, P., Erk, S., Haddad, L., … Meyer-Lindenberg, A. (2014). Striatal response to reward anticipation evidence for a systems-level intermediate phenotype for schizophrenia. Jama Psychiatry, 71(5), 531539. https://doi.org/10.1001/jamapsychiatry.2014.9CrossRefGoogle ScholarPubMed
Guterstam, A., Björnsdotter, M., Gentile, G., & Ehrsson, H. H. (2015). Posterior cingulate cortex integrates the senses of self-location and body ownership. Current Biology, 25(11), 14161425. https://doi.org/10.1016/j.cub.2015.03.059CrossRefGoogle ScholarPubMed
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. https://doi.org/10.1038/npp.2009.129CrossRefGoogle ScholarPubMed
Hadland, K. A., Rushworth, M. F. S., Gaffan, D., & Passingham, R. E. (2003). The anterior cingulate and reward-guided selection of actions. Journal of Neurophysiology, 89(2), 11611164. https://doi.org/10.1152/jn.00634.2002CrossRefGoogle ScholarPubMed
Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2009). Fictive reward signals in the anterior cingulate cortex. Science, 324(5929), 948950. https://doi.org/10.1126/science.1168488CrossRefGoogle ScholarPubMed
*Hooker, C. I., Benson, T. L., Gyurak, A., Yin, H., Tully, L. M., & Lincoln, S. H. (2014). Neural activity to positive expressions predicts daily experience of schizophrenia-spectrum symptoms in adults with high social anhedonia. Journal of Abnormal Psychology, 123(1), 190204. https://doi.org/10.1037/a0035223CrossRefGoogle ScholarPubMed
Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III – The final common pathway. Schizophrenia Bulletin, 35(3), 549562. https://doi.org/10.1093/schbul/sbp006CrossRefGoogle ScholarPubMed
Howes, O. D., McCutcheon, R., Owen, M. J., & Murray, R. M. (2017). The role of genes, stress, and dopamine in the development of schizophrenia. Biological Psychiatry, 81(1), 920. https://doi.org/10.1016/j.biopsych.2016.07.014CrossRefGoogle ScholarPubMed
*Huang, J., Yang, X., Lan, Y., Zhu, C., Liu, X., Wang, Y., … Chan, R. C. K. (2016). Neural substrates of the impaired effort expenditure decision making in schizophrenia. Neuropsychology, 30(6), 685696. https://doi.org/10.1037/neu0000284CrossRefGoogle ScholarPubMed
Hunnicutt, B. J., Jongbloets, B. C., Birdsong, W. T., Gertz, K. J., Zhong, H., & Mao, T. (2016). A comprehensive excitatory input map of the striatum reveals novel functional organization. ELife, 5, e19103. https://doi.org/10.7554/eLife.19103CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748751. https://doi.org/10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews. Neuroscience, 9(4), 304313. https://doi.org/10.1038/nrn2332CrossRefGoogle ScholarPubMed
Joo, S. W., Chon, M.-W., Rathi, Y., Shenton, M. E., Kubicki, M., & Lee, J. (2018). Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia. Schizophrenia Research, 192, 159166. https://doi.org/10.1016/j.schres.2017.05.008CrossRefGoogle ScholarPubMed
*Juckel, G., Schlagenhauf, F., Koslowski, M., Wustenberg, T., Villringer, A., Knutson, B., … Heinz, A. (2006). Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage, 29(2), 409416. https://doi.org/10.1016/j.neuroimage.2005.07.051CrossRefGoogle ScholarPubMed
Kambeitz, J., Kambeitz-Ilankovic, L., Leucht, S., Wood, S., Davatzikos, C., Malchow, B., … Koutsouleris, N. (2015). Detecting neuroimaging biomarkers for schizophrenia: A meta-analysis of multivariate pattern recognition studies. Neuropsychopharmacology, 40(7), 17421751. https://doi.org/10.1038/npp.2015.22CrossRefGoogle ScholarPubMed
Kegeles, L. S., Abi-Dargham, A., Frankle, W. G., Gil, R., Cooper, T. B., Slifstein, M., … Laruelle, M. (2010). Increased synaptic dopamine function in associative regions of the Striatum in schizophrenia. Archives of General Psychiatry, 67(3), 231239. https://doi.org/10.1001/archgenpsychiatry.2010.10CrossRefGoogle ScholarPubMed
Keshavan, M. S., & Ongur, D. (2014). The journey from RDC/DSM diagnoses toward RDoC dimensions. World Psychiatry, 13(1), 4446. https://doi.org/10.1002/wps.20105CrossRefGoogle ScholarPubMed
Kieslich, K., Valton, V., & Roiser, J. P. (2022). Pleasure, reward value, prediction error and anhedonia. Current Topics in Behavioral Neurosciences, 58, 281304. https://doi.org/10.1007/7854_2021_295CrossRefGoogle ScholarPubMed
*Kim, B.-H., Shin, Y.-B., Kyeong, S., Lee, S.-K., & Kim, J.-J. (2018). Disrupted salience processing involved in motivational deficits for real-life activities in patients with schizophrenia. Schizophrenia Research, 197, 407413. https://doi.org/10.1016/j.schres.2018.01.019CrossRefGoogle ScholarPubMed
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI Visualization of Brain Activity during a Monetary Incentive Delay Task. NeuroImage, 12(1), 2027. http://dx.doi.org/10.1006/nimg.2000.0593.CrossRefGoogle ScholarPubMed
*Koch, K., Schachtzabel, C., Wagner, G., Schikora, J., Schultz, C., Reichenbach, J. R., … Schloesser, R. G. M. (2010). Altered activation in association with reward-related trial-and-error learning in patients with schizophrenia. Neuroimage, 50(1), 223232. https://doi.org/10.1016/j.neuroimage.2009.12.031CrossRefGoogle ScholarPubMed
Kolling, N., Wittmann, M. K., Behrens, T. E. J., Boorman, E. D., Mars, R. B., & Rushworth, M. F. S. (2016). Value, search, persistence and model updating in anterior cingulate cortex. Nature Neuroscience, 19(10), 12801285. https://doi.org/10.1038/nn.4382CrossRefGoogle ScholarPubMed
Kring, A. M., & Barch, D. M. (2014). The motivation and pleasure dimension of negative symptoms: Neural substrates and behavioral outputs. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 24(5), 725736. https://doi.org/10.1016/j.euroneuro.2013.06.007CrossRefGoogle ScholarPubMed
Kring, A. M., & Elis, O. (2013). Emotion deficits in people with schizophrenia. Annual Review of Clinical Psychology, 9, 409433. https://doi.org/10.1146/annurev-clinpsy-050212-185538CrossRefGoogle ScholarPubMed
Leech, R., Braga, R., & Sharp, D. J. (2012). Echoes of the brain within the posterior cingulate cortex. Journal of Neuroscience, 32(1), 215222. https://doi.org/10.1523/JNEUROSCI.3689-11.2012CrossRefGoogle ScholarPubMed
Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(1), 1232. https://doi.org/10.1093/brain/awt162CrossRefGoogle ScholarPubMed
Lerner, T. N., Shilyansky, C., Davidson, T. J., Evans, K. E., Beier, K. T., Zalocusky, K. A., … Deisseroth, K. (2015). Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell, 162(3), 635647. https://doi.org/10.1016/j.cell.2015.07.014CrossRefGoogle ScholarPubMed
Leroy, A., Amad, A., D'Hondt, F., Pins, D., Jaafari, N., Thomas, P., & Jardri, R. (2020). Reward anticipation in schizophrenia: A coordinate-based meta-analysis. Schizophrenia Research, 218, 26. https://doi.org/10.1016/j.schres.2019.12.041CrossRefGoogle ScholarPubMed
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., … Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ (Clinical Research Ed.), 339, b2700. https://doi.org/10.1136/bmj.b2700CrossRefGoogle ScholarPubMed
Lieberman, M. D., & Cunningham, W. A. (2009). Type I and type II error concerns in fMRI research: Re-balancing the scale. Social Cognitive and Affective Neuroscience, 4(4), 423428. https://doi.org/10.1093/scan/nsp052CrossRefGoogle ScholarPubMed
Lungu, O., Barakat, M., Laventure, S., Debas, K., Proulx, S., Luck, D., & Stip, E. (2013). The incidence and nature of cerebellar findings in schizophrenia: A quantitative review of fMRI literature. Schizophrenia Bulletin, 39(4), 797806. https://doi.org/10.1093/schbul/sbr193CrossRefGoogle ScholarPubMed
Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2001). Remembering familiar people: The posterior cingulate cortex and autobiographical memory retrieval. Neuroscience, 104(3), 667676. https://doi.org/10.1016/S0306-4522(01)00108-7CrossRefGoogle ScholarPubMed
*Makowski, C. S., Lepage, M., & Harvey, P.-O. (2016). Functional neural correlates of social approval in schizophrenia. Social Cognitive and Affective Neuroscience, 11(3), 445457. https://doi.org/10.1093/scan/nsv125CrossRefGoogle ScholarPubMed
McCutcheon, R. A., Abi-Dargham, A., & Howes, O. D. (2019). Schizophrenia, dopamine and the striatum: From biology to symptoms. Trends in Neurosciences, 42(3), 205220. https://doi.org/10.1016/j.tins.2018.12.004CrossRefGoogle ScholarPubMed
McCutcheon, R. A., Marques, T. R., & Howes, O. D.(2020). Schizophrenia—An Overview. JAMA Psychiatry, 77(2), 201. http://dx.doi.org/10.1001/jamapsychiatry.2019.3360CrossRefGoogle ScholarPubMed
*Morris, R. W., Quail, S., Griffiths, K. R., Green, M. J., & Balleine, B. W. (2015). Corticostriatal control of goal-directed action is impaired in schizophrenia. Biological Psychiatry, 77(2), 187195. https://doi.org/10.1016/j.biopsych.2014.06.005CrossRefGoogle ScholarPubMed
Morris, R. W., Vercammen, A., Lenroot, R., Moore, L., Langton, J. M., Short, B., … Weickert, T. W. (2012). Disambiguating ventral striatum fMRI-related BOLD signal during reward prediction in schizophrenia. Molecular Psychiatry, 17(3), 235. 280–289. https://doi.org/10.1038/mp.2011.75CrossRefGoogle ScholarPubMed
*Murray, G. K., Corlett, P. R., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., … Fletcher, P. C. (2008). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13(3), 267276. https://doi.org/10.1038/sj.mp.4002058CrossRefGoogle ScholarPubMed
Neafsey, E. J., Terreberry, R. R., Hurley, K. M., Ruit, K. G., & Frysztak, R. J. (1993). Anterior cingulate cortex in rodents: Connections, visceral control functions, and implications for emotion. In Vogt, B. A. & Gabriel, M. (Eds.), Neurobiology of cingulate cortex and limbic thalamus: A comprehensive handbook (pp. 206223). Boston, MA: Birkhäuser. https://doi.org/10.1007/978-1-4899-6704-6_7CrossRefGoogle Scholar
Nestler, E. J., & Carlezon, W. A. Jr. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 59(12), 11511159. https://doi.org/10.1016/j.biopsych.2005.09.018CrossRefGoogle ScholarPubMed
*Nielsen, , Rostrup, E., Wulff, S., Bak, N., Lublin, H., Kapur, S., & Glenthøj, B. (2012). Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biological Psychiatry, 71(10), 898905. https://doi.org/10.1016/j.biopsych.2012.02.007CrossRefGoogle ScholarPubMed
Nordstroem, A.-L., Talbot, D., Bernasconi, C., Berardo, C. G., & Lalonde, J. (2017). Burden of illness of people with persistent symptoms of schizophrenia: A multinational cross-sectional study. International Journal of Social Psychiatry, 63(2), 139150. https://doi.org/10.1177/0020764016688040CrossRefGoogle ScholarPubMed
O'Neill, A., Mechelli, A., & Bhattacharyya, S. (2019). Dysconnectivity of large-scale functional networks in early psychosis: A meta-analysis. Schizophrenia Bulletin, 45(3), 579590. https://doi.org/10.1093/schbul/sby094CrossRefGoogle ScholarPubMed
Pacheco, J., Garvey, M. A., Sarampote, C. S., Cohen, E. D., Murphy, E. R., & Friedman-Hill, S. R. (2022). Annual research review: The contributions of the RDoC research framework on understanding the neurodevelopmental origins, progression and treatment of mental illnesses. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 63(4), 360376. https://doi.org/10.1111/jcpp.13543CrossRefGoogle ScholarPubMed
Padoa-Schioppa, C., & Cai, X. (2011). The orbitofrontal cortex and the computation of subjective value: Consolidated concepts and new perspectives. Annals of the New York Academy of Sciences, 1239(1), 130137. https://doi.org/10.1111/j.1749-6632.2011.06262.xCrossRefGoogle ScholarPubMed
*Paradiso, S., Andreasen, N. C., Crespo-Facorro, B., O'Leary, D. S., Watkins, G. L., Boles Ponto, L. L., & Hichwa, R. D. (2003). Emotions in unmedicated patients with schizophrenia during evaluation with positron emission tomography. The American Journal of Psychiatry, 160(10), 17751783. https://doi.org/10.1176/appi.ajp.160.10.1775CrossRefGoogle ScholarPubMed
Park, I. H., Chun, J. W., Park, H.-J., Koo, M.-S., Park, S., Kim, S.-H., & Kim, J.-J. (2015). Altered cingulo-striatal function underlies reward drive deficits in schizophrenia. Schizophrenia Research, 161(2), 229236. https://doi.org/10.1016/j.schres.2014.11.005CrossRefGoogle ScholarPubMed
Picard, H., Amado, I., Mouchet-Mages, S., Olie, J.-P., & Krebs, M.-O. (2008). The role of the cerebellum in schizophrenia: An update of clinical, cognitive, and functional evidences. Schizophrenia Bulletin, 34(1), 155172. https://doi.org/10.1093/schbul/sbm049CrossRefGoogle ScholarPubMed
Pinheiro, A. P., Johnson, J. F., Amorim, M., Roberto, M., Schwartze, M., Kotz, S. A., & Shenton, M. E. (2021). The cerebellum links to positive symptoms of psychosis: A systematic review and meta-analysis. Schizophrenia Bulletin Open, 2(1), sgab039. https://doi.org/10.1093/schizbullopen/sgab039CrossRefGoogle Scholar
*Prettyman, G. E., Kable, J. W., Didier, P., Shankar, S., Satterthwaite, T. D., Davatzikos, C., … Wolf, D. H. (2021). Relationship of ventral striatum activation during effort discounting to clinical amotivation severity in schizophrenia. NPJ Schizophrenia, 7(1), 48. https://doi.org/10.1038/s41537-021-00178-9CrossRefGoogle ScholarPubMed
Provencher, H. L., & Mueser, K. T. (1997). Positive and negative symptom behaviors and caregiver burden in the relatives of persons with schizophrenia. Schizophrenia Research, 26(1), 7180. https://doi.org/10.1016/S0920-9964(97)00043-1CrossRefGoogle ScholarPubMed
Radua, J., Schmidt, A., Borgwardt, S., Heinz, A., Schlagenhauf, F., McGuire, P., & Fusar-Poli, P. (2015). Ventral striatal activation during reward processing in psychosis: A neurofunctional meta-analysis. JAMA Psychiatry, 72(12), 1243. https://doi.org/10.1001/jamapsychiatry.2015.2196CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain's default mode network. Annual Review of Neuroscience, 38, 433447. https://doi.org/10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Raymond, J. L. (2020). Research on the cerebellum yields rewards. Nature, 579(7798), 202203. https://doi.org/10.1038/d41586-020-00636-xCrossRefGoogle ScholarPubMed
*Reinen, J. M., Van Snellenberg, J. X., Horga, G., Abi-Dargham, A., Daw, N. D., & Shohamy, D. (2016). Motivational context modulates prediction error response in schizophrenia. Schizophrenia Bulletin, 42(6), 14671475. https://doi.org/10.1093/schbul/sbw045CrossRefGoogle ScholarPubMed
*Richter, A., Petrovic, A., Diekhof, E. K., Trost, S., Wolter, S., & Gruber, O. (2015). Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia. Journal of Psychiatric Research, 71, 815. https://doi.org/10.1016/j.jpsychires.2015.09.005CrossRefGoogle ScholarPubMed
Rolls, E. T., & Grabenhorst, F. (2008). The orbitofrontal cortex and beyond: From affect to decision-making. Progress in Neurobiology, 86(3), 216244. https://doi.org/10.1016/j.pneurobio.2008.09.001CrossRefGoogle ScholarPubMed
Samson, R. D., Frank, M. J., & Fellous, J. M. (2010). Computational models of reinforcement learning: The role of dopamine as a reward signal. Cognitive Neurodynamics, 4(2), 91105. https://doi.org/10.1007/s11571-010-9109-xCrossRefGoogle ScholarPubMed
Sass, L. A., & Parnas, J. (2003). Schizophrenia, consciousness, and the self. Schizophrenia Bulletin, 29(3), 427444. https://doi.org/10.1093/oxfordjournals.schbul.a007017CrossRefGoogle ScholarPubMed
*Schlagenhauf, F., Sterzer, P., Schmack, K., Ballmaier, M., Rapp, M., Wrase, J., … Heinz, A. (2009). Reward feedback alterations in unmedicated schizophrenia patients: Relevance for delusions. Biological Psychiatry, 65(12), 10321039. https://doi.org/10.1016/j.biopsych.2008.12.016CrossRefGoogle ScholarPubMed
Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 6275. https://doi.org/10.1016/j.neulet.2018.07.005CrossRefGoogle ScholarPubMed
Schmahmann, J. D., & Caplan, D. (2006). Cognition, emotion and the cerebellum. Brain, 129, 290292. https://doi.org/10.1093/brain/awh729CrossRefGoogle ScholarPubMed
Schoenbaum, G., Takahashi, Y., Liu, T.-L., & McDannald, M. A. (2011). Does the orbitofrontal cortex signal value? Annals of the New York Academy of Sciences, 1239(1), 8799. https://doi.org/10.1111/j.1749-6632.2011.06210.xCrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 15931599. https://doi.org/10.1126/science.275.5306.1593CrossRefGoogle ScholarPubMed
*Segarra, N., Metastasio, A., Ziauddeen, H., Spencer, J., Reinders, N. R., Dudas, R. B., … Murray, G. K. (2016). Abnormal frontostriatal activity during unexpected reward receipt in depression and schizophrenia: Relationship to anhedonia. Neuropsychopharmacology, 41(8), 20012010. https://doi.org/10.1038/npp.2015.370CrossRefGoogle ScholarPubMed
Shimizu, E., Hashimoto, K., Ochi, S., Fukami, G., Fujisaki, M., Koike, K., … Iyo, M. (2007). Posterior cingulate gyrus metabolic changes in chronic schizophrenia with generalized cognitive deficits. Journal of Psychiatric Research, 41(1), 4956. https://doi.org/10.1016/j.jpsychires.2005.04.015CrossRefGoogle ScholarPubMed
Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: A topographical perspective. Nature Reviews Neuroscience, 22(8), 503513. https://doi.org/10.1038/s41583-021-00474-4CrossRefGoogle ScholarPubMed
*Smieskova, R., Roiser, J. P., Chaddock, C. A., Schmidt, A., Harrisberger, F., Bendfeldt, K., … Borgwardt, S. (2015). Modulation of motivational salience processing during the early stages of psychosis. Schizophrenia Research, 166(1–3), 1723. https://doi.org/10.1016/j.schres.2015.04.036CrossRefGoogle ScholarPubMed
Stark, A. K., Uylings, H. B. M., Sanz-Arigita, E., & Pakkenberg, B. (2004). Glial cell loss in the anterior cingulate cortex, a subregion of the prefrontal cortex, in subjects with schizophrenia. The American Journal of Psychiatry, 161(5), 882888. https://doi.org/10.1176/appi.ajp.161.5.882CrossRefGoogle ScholarPubMed
Strauss, G. P., & Gold, J. M. (2012). A new perspective on anhedonia in schizophrenia. The American Journal of Psychiatry, 169(4), 364373. https://doi.org/10.1176/appi.ajp.2011.11030447CrossRefGoogle ScholarPubMed
Strauss, G. P., Waltz, J. A., & Gold, J. M. (2014). A review of reward processing and motivational impairment in schizophrenia. Schizophrenia Bulletin, 40(Suppl 2), S107S116. https://doi.org/10.1093/schbul/sbt197CrossRefGoogle ScholarPubMed
Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia, 44(12), 21892208. https://doi.org/10.1016/j.neuropsychologia.2006.05.023CrossRefGoogle ScholarPubMed
Thompson, S. G., & Higgins, J. P. (2002). How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine, 21(11), 15591573. https://doi.org/10.1002/sim.1187CrossRefGoogle ScholarPubMed
Treadway, M. T., Buckholtz, J. W., Schwartzman, A. N., Lambert, W. E., & Zald, D. H. (2009). Worth the ‘EEfRT’? The Effort Expenditure for Rewards Task as an Objective Measure of Motivation and Anhedonia. PLoS ONE, 4(8), e6598. http://dx.doi.org/10.1371/journal.pone.0006598.CrossRefGoogle ScholarPubMed
Treadway, M. T., & Zald, D. H. (2013). Parsing anhedonia: Translational models of reward-processing deficits in psychopathology. Current Directions in Psychological Science, 22(3), 244249. https://doi.org/10.1177/0963721412474460.CrossRefGoogle ScholarPubMed
*Ursu, S., Kring, A. M., Gard, M. G., Minzenberg, M. J., Yoon, J. H., Ragland, J. D., … Carter, C. S. (2011). Prefrontal cortical deficits and impaired cognition-emotion interactions in schizophrenia. American Journal of Psychiatry, 168(3), 276285. https://doi.org/10.1176/appi.ajp.2010.09081215CrossRefGoogle ScholarPubMed
van Erp, T. G., Preda, A., Nguyen, D., Faziola, L., Turner, J., Bustillo, J., … Potkin, S. G., & Fbirn (2014). Converting positive and negative symptom scores between PANSS and SAPS/SANS. Schizophrenia Research, 152(1), 289294. https://doi.org/10.1016/j.schres.2013.11.013CrossRefGoogle ScholarPubMed
*Vanes, L. D., Mouchlianitis, E., Collier, T., Averbeck, B. B., & Shergill, S. S. (2018). Differential neural reward mechanisms in treatment-responsive and treatment-resistant schizophrenia. Psychological Medicine, 48(14), 24182427. https://doi.org/10.1017/S0033291718000041CrossRefGoogle ScholarPubMed
van Os, J., & Kapur, S. (2009). Schizophrenia. Lancet, 374(9690), 635645. https://doi.org/10.1016/S0140-6736(09)60995-8CrossRefGoogle ScholarPubMed
van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P., & Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychological Medicine, 39(2), 179195. https://doi.org/10.1017/S0033291708003814CrossRefGoogle ScholarPubMed
Venkataraman, A., Whitford, T. J., Westin, C.-F., Golland, P., & Kubicki, M. (2012). Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophrenia Research, 139(1), 712. https://doi.org/10.1016/j.schres.2012.04.021CrossRefGoogle ScholarPubMed
*Walter, H., Heckers, S., Kassubek, J., Erk, S., Frasch, K., & Abler, B. (2010). Further evidence for aberrant prefrontal salience coding in schizophrenia. Frontiers in Behavioral Neuroscience, 3, 62. https://doi.org/10.3389/neuro.08.062.2009Google ScholarPubMed
*Walter, H., Kammerer, H., Frasch, K., Spitzer, M., & Abler, B. (2009). Altered reward functions in patients on atypical antipsychotic medication in line with the revised dopamine hypothesis of schizophrenia. Psychopharmacology, 206(1), 121132. https://doi.org/10.1007/s00213-009-1586-4CrossRefGoogle ScholarPubMed
*Waltz, J. A., Schweitzer, J. B., Ross, T. J., Kurup, P. K., Salmeron, B. J., Rose, E. J., … Stein, E. A. (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology, 35(12), 24272439. https://doi.org/10.1038/npp.2010.126CrossRefGoogle Scholar
*Waltz, J. A., Xu, Z., Brown, E. C., Ruiz, R. R., Frank, M. J., & Gold, J. M. (2018). Motivational deficits in schizophrenia are associated with reduced differentiation between gain and loss-avoidance feedback in the striatum. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 3(3), 239247. https://doi.org/10.1016/j.bpsc.2017.07.008CrossRefGoogle ScholarPubMed
Wang, H., Zeng, L.-L., Chen, Y., Yin, H., Tan, Q., & Hu, D. (2015). Evidence of a dissociation pattern in default mode subnetwork functional connectivity in schizophrenia. Scientific Reports, 5, 14655. https://doi.org/10.1038/srep14655CrossRefGoogle ScholarPubMed
Whitton, A. E., Treadway, M. T., & Pizzagalli, D. A. (2015). Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Current Opinion in Psychiatry, 28(1), 712. https://doi.org/10.1097/YCO.0000000000000122CrossRefGoogle ScholarPubMed
Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338347. https://doi.org/10.1016/S1364-6613(98)01221-2CrossRefGoogle ScholarPubMed
World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. World Health Organization. https://apps.who.int/iris/handle/10665/37958Google Scholar
*Yan, C., Wang, Y., Su, L., Xu, T., Yin, D., Fan, M., … Chan, R. C. K. (2016). Differential mesolimbic and prefrontal alterations during reward anticipation and consummation in positive and negative schizotypy. Psychiatry Research-Neuroimaging, 254, 127136. https://doi.org/10.1016/j.pscychresns.2016.06.014CrossRefGoogle ScholarPubMed
*Yang, Z.-Y., Zhang, R.-T., Wang, Y.-M., Huang, J., Zhou, H.-Y., Cheung, E. F. C., … Chan, R. C. K. (2021). Altered activation and functional connectivity in individuals with social anhedonia when envisioning positive future episodes. Psychological Medicine, 52(16), 40584066. https://doi.org/10.1017/S0033291721000970.CrossRefGoogle Scholar
Zeng, J., Yan, J., Cao, H., Su, Y., Song, Y., Luo, Y., & Yang, X. (2022). Neural substrates of reward anticipation and outcome in schizophrenia: A meta-analysis of fMRI findings in the monetary incentive delay task. Translational Psychiatry, 12(1), 448. https://doi.org/10.1038/s41398-022-02201-8CrossRefGoogle ScholarPubMed
Supplementary material: File

Wang et al. supplementary material
Download undefined(File)
File 134.5 KB