Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T11:04:33.831Z Has data issue: false hasContentIssue false

A review of the biochemical and neuropharmacological actions of lithium

Published online by Cambridge University Press:  09 July 2009

Andrew J. Wood*
Affiliation:
MRC Unit and University Department of Clinical Pharmacology, Radcliffe Infirmary, Oxford
Guy M. Goodwin
Affiliation:
MRC Unit and University Department of Clinical Pharmacology, Radcliffe Infirmary, Oxford
*
1Address for correspondence: Dr A. J. Wood, MRC Clinical Pharmacology Unit & University Department of Clinical Pharmacology, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE.

Synopsis

The pharmacological actions central to the therapeutic effects of lithium have not yet been established, despite almost 40 years of clinical use and scientific investigation. We review the biochemical and neuropharmacological data relating to this problem and attempt to identify profitable areas for further research.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahluwalia, P. & Singhal, R. L. (1980). Effect of low-dose lithium administration and subsequent withdrawal on biogenic amines in rat brain. British Journal of Pharmacology 71, 601607.CrossRefGoogle ScholarPubMed
Ahluwalia, P. & Singhal, R. L. (1981). Monoamine uptake into synaptasomes from various regions of rat brain following lithium administration and withdrawal. Neuropharmacology 20, 483487.CrossRefGoogle Scholar
Akagawa, K., Watanabe, M. & Tsukada, Y. (1980). Activity of erythrocyte Na-KATPase in manic patients. Journal of Neurochemistry 35, 258260.CrossRefGoogle Scholar
Allison, J. H. & Blisner, M. E. (1976). Inhibition of the effects of lithium on brain inositol by atropine and scopolamine. Biochemical and Biophysical Research Communications 68, 13321338.CrossRefGoogle ScholarPubMed
Allison, J. H. & Stewart, M. A. (1971). Reduced brain inositol in lithium treated rats. Nature New Biology 233, 267268.CrossRefGoogle ScholarPubMed
Allison, J. H., Blisner, M. E., Holland, W. H., Hippius, P. P. & Sherman, W. R. (1976). Increased brain myoinositol-1-phosphate in lithium-treated rats. Biochemical and Biophysical Research Communications 71, 664670.CrossRefGoogle ScholarPubMed
Allison, J. H, Boshans, R. L., Hallcher, L. M., Packman, P M & Sherman, W. R. (1980). The effects of lithium in frontal cerebral cortex, in cerebellum, and in corpus callosum of the rat. Journal of Neurochemistry 34, 456458.CrossRefGoogle ScholarPubMed
American Psychiatric Association (1975). Task force on lithium therapy: the current status of lithium therapy: report of the APA task force. American Journal of Psychiatry 132, 9971001.CrossRefGoogle Scholar
Amir, S. & Simantov, R. (1981). Chronic lithium administration alters the interaction between opiate antagonists and opiate receptors in vivo. Neuropharmacology 20, 581591.CrossRefGoogle ScholarPubMed
Atterwill, C. K. & Tordoff, A. F. C. (1982). Effects of repeated lithium administration on the subcellular distribution of 5-hydroxytryptamine in rat brain. British Journal of Pharmacology 76, 413421.CrossRefGoogle ScholarPubMed
Ball, J. H., Kaninsky, N. I., Hardman, J. G., Broadus, A. E., Sutherland, E. W. & Liddle, G. W. (1972). Effects of catecholamines and adrenergic blocking agents on plasma and urinary cyclic nucleotides in man. Journal of Clinical Investigation 51, 21242129.CrossRefGoogle ScholarPubMed
Baron, D. N., Green, R. J. & Khan, F. A. (1985). Adrenaline and ion flux in isolated human leucocytes. Clinical Science 68, 517521.CrossRefGoogle ScholarPubMed
Batlle, D. C., von Riotte, A. B., Gavira, M. & Grupp, M. (1985). Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. New England Journal of Medicine 312, 408414.CrossRefGoogle ScholarPubMed
Batty, I. & Nahorski, S. R. (1985). Different effects of lithium on muscarinic receptor stimulation of inositol phosphates in rat cerebral cortex slices. Journal of Neurochemistry 45, 15141521.CrossRefGoogle Scholar
Berridge, M. J. & Irvine, R. P. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315321.CrossRefGoogle ScholarPubMed
Berridge, M. J., Downes, C. P. & Hanley, M. R. (1982). Lithium amplifies the agonist dependent phosphatidylinositol responses in brain and salivary glands. Biochemical Journal 206, 587595.CrossRefGoogle ScholarPubMed
Blier, P. & de Montigny, C. (1985). Short-term lithium administration enhances serotonergic neurotransmission: electrophysiological evidence in rat CNS. European Journal of Pharmacology 113, 6977.CrossRefGoogle ScholarPubMed
Bliss, E. L. & Ailion, J. (1970). The effect of lithium upon brain neuroamines. Brain Research 24, 305310.CrossRefGoogle ScholarPubMed
Bloom, F. E., Baetge, G., Deyo, S., Ettenberg, A., Koda, L., Magistretti, P. J., Shoemaker, W. J. & Staunton, D. A. (1983). Chemical and physiological aspects of the actions of lithium and antidepressant drugs. Neuropharmacology 22, 359365.CrossRefGoogle ScholarPubMed
Boon, N. A., Aronson, J. K., Hallis, K. F., White, N. J., Rayne, A. E. G. & Grahame-Smith, D. G. (1984). A method for the study of cation transport in vivo: effects of digoxin administration and of chronic renal failure on the disposition of an oral load of rubidium chloride. Clinical Science 66, 569574.CrossRefGoogle Scholar
Bowers, M. B. & Rozitis, A. (1982). Dopamine metabolites and catalepsy after lithium and haloperidol. European Journal of Pharmacology 78, 113115.CrossRefGoogle ScholarPubMed
Bunney, W. E. & Garland, B. L. (1983). Possible receptor effects of chronic lithium administration. Neuropharmacology 22, 367372.CrossRefGoogle ScholarPubMed
Cade, J. F. (1949). Lithium salts in the treatment of psychotic excitement. Medical Journal of Australia 36, 349352.CrossRefGoogle Scholar
Cantley, L. C., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C. & Guidotti, G. (1977). Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. The Journal of Biological Chemistry 252, 74217423.CrossRefGoogle ScholarPubMed
Cohen, M. B., Lipinski, J. F. & Alterman, R. I. (1982). Lithium in the treatment of mania; double blind placebo controlled trials. American Journal of Psychiatry 139, 11621164.Google Scholar
Conn, P. J. & Sanders-Bush, E. (1985). Serotonin stimulated phosphoinositide turn-over: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. Journal of Pharmacology and Experimental Therapeutics 234, 195203.Google Scholar
Coppen, A. & Shaw, D. M. (1963). Mineral metabolism in melancholia. British Medical Journal ii, 14391444.CrossRefGoogle Scholar
Coppen, A., Abou-Saleh, M., Milln, P., Bailey, J. & Wood, K. (1983). Decreasing lithium dosage reduces morbidity and side-effects during prophylaxis. Journal of Affective Disorders 5, 353362.CrossRefGoogle ScholarPubMed
Davis, K. L., Berger, P. A., Hollister, L. E. & Defraites, E. (1978). Physostigmine in mania. Archives of General Psychiatry 35, 119122.CrossRefGoogle ScholarPubMed
Deutsch, S. I., Peselow, E. D., Banay-Schwartz, M., Gershon, S., Fieve, R. R. & Rotrosen, J. (1981 a). Effect of lithium on glycine levels in patients with affective disorders. American Journal of Psychiatry 138, 683684.Google ScholarPubMed
Deutsch, S. I., Stanley, M., Banay-Schwartz, M., Peselow, E. D., Virgilio, J., Geisler, S. & Mohs, R. I. (1981 b). The effects of lithium on rat brain and erythrocyte glycine levels. European Journal of Pharmacology 75, 7576.CrossRefGoogle ScholarPubMed
Le Douarin, C., Oblin, A., Fage, D. & Scatton, B. (1983). Influence of lithium on biochemical cell supersensitivity induced by prolonged haloperidol treatment. European Journal of Pharmacology 93, 5562.CrossRefGoogle ScholarPubMed
Dorus, E., Pandey, G. N. & Frazer, A. (1974). Genetic determinant of lithium ion distribution. I. An in vitro monozygotic dizygotic twin study. Archives of General Psychiatry 31, 463465.CrossRefGoogle Scholar
Dorus, E., Pandey, G. N. & Davis, J. M. (1975). Genetic determinant of lithium ion distribution, II. An in vitro and in vivo Monozygotic-dizygotic twin study. Archives of General Psychiatry 32, 10971102.CrossRefGoogle Scholar
Dorus, E., Pandey, G. N., Shaughnessy, R., Gavira, M., Val, E., Ericksen, S. & Davis, J. M. (1979). Lithium transport across red cell membranes: a cell membrane abnormality in manic depressive illness. Science 205, 932934.CrossRefGoogle ScholarPubMed
Dorus, E., Cox, N., Gibbons, R., Shaughnessy, R., Pandey, G. N. & Cloninger, C. R. (1983). Lithium ion transport and affective disorders within families of bipolar patients. Identification of major gene locus. Archives of General Psychiatry 40, 545552.CrossRefGoogle ScholarPubMed
Duhm, J., Eisenned, F., Becker, B. F. & Greil, W. (1976). Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+ dependent Li+ countertransport system of human erythrocytes. Pfluegers Archive 364, 147155.CrossRefGoogle Scholar
Duhm, J. & Becker, B. F. (1977 a). Studies on the lithium transport across the red cell membrane. II. Characterisation of ouabain sensitive and ouabain insensitive Li+ transport. Effects of bicarbonate and dipyridamole. Pflueger's Archive 367, 211219.CrossRefGoogle ScholarPubMed
Duhm, J. & Becker, B. F. (1977 b). Studies on the lithium transport across the red cell membrane, IV. Interindividual variations in the Na+ dependent Li+ countertransport system of human erythrocytes. Pflueger's Archive 370, 211219.CrossRefGoogle ScholarPubMed
Ebstein, R. P., Belmaker, R. H., Grunhaus, L. & Rimon, R. (1976). Lithium inhibition of adrenaline stimulated adenylate cyclase in humans. Nature 259, 411413.CrossRefGoogle ScholarPubMed
Ebstein, R. P., Hermoni, M. & Belmaker, R. H. (1980). The effect of lithium on noradrenaline induced cyclic AMP accumulation in rat brain. Inhibition after chronic treatment and absence of supersensitivity. Journal of Pharmacology and Experimental Therapeutics 213, 161167.Google ScholarPubMed
Egeland, J. A., Kidd, J. R., Frazer, A., Kidd, K. K. & Neuhauser, V. I. (1984). Amish study: Lithium-sodium countertransport and catechol-o-methyltransferase in pedigrees of bipolar probands. American Journal of Psychiatry 144, 10491054.Google Scholar
Ehrlich, B. E., Diamond, J. M., Kaye, W., Ornitz, E. M. & Gosenfeld, L. (1979). Lithium transport from a pair of twins with manic disorder. American Journal of Psychiatry 136, 14771478.Google ScholarPubMed
Eroglu, L., Keyer-Wysal, M. & Baylara, S. (1984). Effects of lithium, diazepam and propranolol on brain NaKATPase activity in stress exposed mice. Drug Research 34, 762763.Google Scholar
Fernström, J. D. (1983). Role of precursor availability in control of monoamine biosynthesis in brain. Physiological Reviews 63, 484546.CrossRefGoogle ScholarPubMed
Forrest, J. N., Cohen, A. D., Toretti, J., Himmelhoch, J. M. & Epstein, F. H. (1974). On the mechanism of lithium-induced diabetes insipidus in man and the rat. Journal of Clinical Investigation 53, 11151123.CrossRefGoogle ScholarPubMed
Friedman, E., Cooper, T. B. & Dallob, A. (1983). Effects of chronic antidepressant treatment on serotonin receptor activity in mice. European Journal of Pharmacology 89, 6976.CrossRefGoogle ScholarPubMed
Funder, J., Tosteson, D. C. & Wieth, J. O. (1978). Effects of bicarbonate on the lithium transport in human red cells. Journal of General Physiology 71, 721.CrossRefGoogle ScholarPubMed
Gallagher, D. W., Pert, A. & Bunney, W. E. Jnr (1978). Haloperidolinduced presynaptic dópamine super-sensitivity is blocked by chronic lithium. Nature 273, 309312.CrossRefGoogle Scholar
Gibbons, J. L. (1960). Total body sodium and potassium in depressive illness. Clinical Science 19, 133138.Google ScholarPubMed
Gillin, J. C., Hong, J. S., Yang, H. Y. & Costa, E. (1978). [Met5[Enkephalin content in brain regions of rats treated with lithium. Proceedings of the National Academy of Science, USA 75, 29912993.CrossRefGoogle ScholarPubMed
Goodnick, P. J., Meltzer, H. L., Dunner, D. L. & Fieve, R. R. (1979). Repression and reactivation of lithium efflux from erythrocytes. Psychiatry Research 1, 147152.CrossRefGoogle ScholarPubMed
Goodwin, G. M. & Green, A. R. (1985). A behavioural and biochemical study in mice and rats of putative agonists and antagonists for 5-HT1, and 5-HT2, receptors. British Journal of Pharmacology 84, 743753.CrossRefGoogle Scholar
Goodwin, G. M., Green, A. R. & Johnson, P. (1984). 5-HT2 receptor characteristics in frontal cortex and 5-HT2 receptor-mediated head-twitch behaviour following antidepressant treatment to mice. British Journal of Pharmacology 83, 235242.CrossRefGoogle ScholarPubMed
Goodwin, G. M., De Souza, R. J. & Green, A. R. (1985 a). The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT); a model of presynaptic 5-HT1 function. Neuropharmacology 24, 11871194.CrossRefGoogle Scholar
Goodwin, G. M., De Souza, R. J. & Green, A. R. (1985 b). Presynaptic serotonin receptor-mediated response in mice attenuated by anti-depressant drugs and electroconvulsive shock. Nature 317, 531533.CrossRefGoogle Scholar
Goodwin, G. M., De Souza, R. J., Wood, A. J. & Green, A. R. (1986 a). The enhancement by lithium of the 5-HT1A mediated serotonin syndrome produced by 8-OH-DPAT in the rat: evidence for a post-synaptic mechanism. Psychopharmacology 90, 488493.CrossRefGoogle ScholarPubMed
Goodwin, G. M., De Souza, R. J., Wood, A. J. & Green, A. R. (1986 b). Lithium decreases 5-HT1A and 5-HT2 receptor, and α-adrenoceptor mediated function in mice. Psychopharmacology 90, 482487.CrossRefGoogle Scholar
Goodwin, G. M., De Souza, R. J. & Green, A. R. (1987). Attenuation by electroconvulsive shock and antidepressant drugs of the 5-HT1A receptor-mediated hypothermia and serotonin syndrome produced by 8-OH-DPAT in the rat. Psychopharmacology 91, 500505.CrossRefGoogle ScholarPubMed
Grahame-Smith, D. G. (1974). How important is the synthesis of brain 5-hydroxytryptamine in the physiological control of its central function? Archives of Biochemical Psychopharmacology 10, 8391.Google ScholarPubMed
Grahame-Smith, D. G. & Green, A. R. (1974). The role of brain 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibitors. British Journal of Pharmacology 52, 1926.CrossRefGoogle Scholar
Gruenthal, M. (1984). Lithium attenuates the development of lesion-induced behavioural supersensitivity to apomorphine. Brain Research 306, 189196.CrossRefGoogle ScholarPubMed
Guerri, C., Ribeles, M. & Grisolia, S. (1981). Effects of lithium and lithium and alcohol administration on Na-KATPase. Biochemical Pharmacology 30, 2530.CrossRefGoogle Scholar
Haag, M., Haag, H., Eisenried, F. & Greil, W. (1984). RBC-choline: changes by lithium and relation to prophylactic response. Acta Psychiatrica Scandinavica 70, 389399.CrossRefGoogle ScholarPubMed
Haas, M., Schooler, J. & Tosteson, D. C. (1975). Coupling of lithium to sodium transport in human red cells. Nature 258, 425427.CrossRefGoogle ScholarPubMed
Hallcher, L. M. & Sherman, W. R. (1980). The effects oflithium and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. Journal of Biological Chemistry 255, 1089610901.CrossRefGoogle ScholarPubMed
Hanin, I., Kopp, U., Spiker, D. G., Neil, J. F., Shaw, D. H. & Kupfer, D. J. (1980 a). RBC and plasma choline levels in control and depressed individuals. A critical evaluation. Psychiatry Research 3, 345355.CrossRefGoogle ScholarPubMed
Hanin, I., Mallinger, A. G., Kopp, U., Himmelhoch, J. M. & Neil, J. F. (1980 b). Mechanism of lithium induced elevation in red blood cell choline content: an in vitro analysis. Communications in Psychopharmacology 4, 345355.Google ScholarPubMed
Heal, D. J., Akagi, H., Bowdler, J. M. & Green, A. R. (1981). Repeated electroconvulsive shock attenuates clonidine-induced hypoactivity in rodents. European Journal of Pharmacology 75, 231237.CrossRefGoogle ScholarPubMed
Heal, D. J., Lister, S., Smith, S. L., Davies, C. L., Molyneux, S. G. & Green, A. R. (1983). The effects of acute and repeated administration of various antidepressant drugs on clonidineinduced hypoactivity in mice and rats. Neuropharmacology 22, 983992.CrossRefGoogle ScholarPubMed
Heninger, G. R., Charney, D. S. & Steinberg, D. E. (1983). Lithium carbonate augmentation of antidepressant treatment; an effective treatment for treatment-refractory depression. Archives of General Psychiatry 40, 13351342.CrossRefGoogle ScholarPubMed
Hesketh, J. E., Glen, A. I. M. & Reading, H. W. (1977 a). Membrane ATPase activities in depressive illness. Journal of Neurochemistry 28, 14011402.CrossRefGoogle ScholarPubMed
Hesketh, J. E., Kinloch, N. & Reading, H. W., (1977 b). The effects of lithium on ATPase activity in subcellular fractions from rat brain. Journal of Neurochemistry 29, 883894.CrossRefGoogle ScholarPubMed
Hesketh, J. E., Loudon, J. B., Reading, H. W. & Glen, A. I. M. (1978). The effect of lithium treatment on erythrocyte membrane ATPase activities and erythrocyte ion content. British Journal of Clinical Pharmacology 5, 323329.CrossRefGoogle Scholar
Hetmar, O., Nielsen, M. & Braestrup, C. (1983). Decreased number of benzodiazepine receptors in frontal cortex of rat brain following long-term lithium treatment. Journal of Neurochemistry 41, 217221.CrossRefGoogle ScholarPubMed
Hjorth, S., Carlsson, A., Lindberg, P., Sanchez, D., Wikström, H., Arvidsson, L.-E., Hacksell, U. & Nilsson, J. L. G. (1982). 8-Hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT, a potent and selective simplified ergot congener with central 5-HT-receptor stimulating activity. Journal of Neural Transmission 55, 169188.CrossRefGoogle Scholar
Ho, A. K., Loh, H. H., Craves, F., Hitzemann, R. J. & Gershon, S. (1970). The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamines in brain regions of rats. European Journal of Pharmacology 10, 7278.CrossRefGoogle ScholarPubMed
Hokin-Neaverson, M., Burckhardt, W. & Jefferson, J. W. (1976). Increased erythrocyte Na+-pump and Na-KATPase activity during lithium therapy. Research Communications in Chemical Pathology and Pharmacology 14, 117126.Google Scholar
Honchar, M. P., Olney, J. W. & Sherman, W. R. (1983). Systemic cholinergic agents induce seizures and brain damage in lithium treated rats. Science 220, 23325.CrossRefGoogle ScholarPubMed
Hong, J.-S., Tilson, H. A. & Yoshikawa, K. (1983). Effects of lithium and haloperidol administration on the rat brain levels of substance P. Journal of Pharmacology and Experimental Therapeutics 224, 590593.Google ScholarPubMed
Hruska, R. E., Ludmer, L. M., Pert, A. & Bunney, W. E. (1984). Effects of lithium on 3H-quinuclinidinyl benzilate (3H-QNB) binding to rat brain muscarinic cholinergic receptors. Journal of Neuroscience Research 11, 171177.CrossRefGoogle Scholar
Janka, Z., Szentistvanyi, I., Rimanoczy, A. & Juhasz, A. (1980). The influence of external sodium and potassium on lithium uptake by primary brain cell cultures at ‘therapeutic’ lithium concentration. Psychopharmacology 71, 159163.CrossRefGoogle ScholarPubMed
Janowsky, D. S., El-Jousef, M. K. & Davis, J. M. (1973). Parasympathetic suppression of manic symptoms by physostigmine. Archives of General Psychiatry 27, 542547.CrossRefGoogle Scholar
Jenden, D. J., Jope, R. S. & Fraser, S. L. (1980). A mechanism for the accumulation of choline in erythrocytes during treatment with lithium. Communications in Psychopharmacology 4, 337344.Google ScholarPubMed
Johnson, F. N. (1984). The Psychopharmacology of Lithium. Macmillan Press: London.CrossRefGoogle Scholar
Johnston, B. B., Naylor, G. J., Dick, E. G., Hopwood, S. E. & Dick, D. A. T. (1980). Prediction of course of bipolar manic-depressive illness treated with lithium. Psychological Medicine 10, 329334.CrossRefGoogle ScholarPubMed
Jope, R. S. (1979). Effects of lithium treatment in vitro and in vivo on acetylcholine metabolism in rat brain. Journal of Neurochemistry 33, 487495.CrossRefGoogle ScholarPubMed
Jope, R. S., Jenden, D. J., Ehrlich, B. E. & Diamond, J. M. (1978). Choline accumulates in erythrocytes during lithium therapy. New England Journal of Medicine 299, 833834.Google ScholarPubMed
Jope, R. S., Jenden, D. J., Ehrlich, B. E., Diamond, J. M. & Gosenfeld, L. F. (1980). Erythrocyte choline levels are elevated in manic patients. Proceedings of the National Academy of Science, USA 77, 61446166.CrossRefGoogle Scholar
Kanba, S. & Richelson, E. (1984). Antimuscarinic effects of lithium. New England Journal of Medicine 310, 11991201.Google ScholarPubMed
Knapp, S. & Mandell, A. J. (1973). Short- and long-term lithium administration. Effects on the brain serotonergic biosynthetic systems. Science 180, 645647.CrossRefGoogle Scholar
Knapp, S. & Mandell, A. J. (1975). Effects of lithium chloride on biosynthetic capacity for 5-hydroxytryptamine in rat brain. Journal of Pharmacology and Experimental Therapeutics 193, 812823.Google ScholarPubMed
Kozlowski, M. R., Neve, K. A., Grisham, J. E. & Marshall, J. F. (1983). Chronic lithium administration alters behavioural recovery from nigrostriatal injury; Effects on neostriatal 3H spiroperidol binding sites. Brain Research 267, 301311.CrossRefGoogle ScholarPubMed
Lee, G., Lingsch, C., Lyle, P. T. & Martin, K. (1974). Lithium treatment strongly inhibits choline transport in human erythrocytes. British Journal of Clinical Pharmacology 1, 365370.CrossRefGoogle ScholarPubMed
Lerer, B. & Stanley, M. (1985). Effect of chronic lithium on cholinergically mediated responses and 3H-QNB binding in rat brain. Brain Research 244, 211219.CrossRefGoogle Scholar
Levy, A., Zohar, J. & Belmaker, R. H. (1982). The effect of chronic lithium pretreatment on rat brain muscarinic receptor regulation. Neuropharmacology 21, 11991201CrossRefGoogle ScholarPubMed
Leysen, J. E. (1985). Characterization of serotonin receptor binding sites. In Neuropharmacology of Serotonin (ed. Green, A. R.), pp. 79116. Oxford University Press: Oxford.Google Scholar
Lloyd, K. G., Thuret, F. & Pilc, A. (1985). Upregulation of γ-aminobutyric acid (GABA)B binding sites in the rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. Journal of Pharmacology & Experimental Therapeutics 235, 191199.Google ScholarPubMed
McDonald, E., Leroy, A. & Linnoila, M. (1982). Failure of lithium to counteract vanadate induced inhibition of red blood cell membrane NaK-ATPase. Lancet ii, 774.CrossRefGoogle Scholar
McNulty, J., O'Donovan, D. J. & Leonard, B. J. (1977). The acute effects of amphetamine, chlorpromazine, amitnptyline and lithium on adenosine 5-triphosphatase activities of the rat brain. Biochemical Pharmacology 27, 132133.CrossRefGoogle Scholar
McNulty, J., O'Donovan, D. J. & Leonard, B. J. (1978). The acute and chronic effects of D-amphetamine, chlorpromazine, amitriptyline and lithium chloride on adenosine 5-triphosphatase in different regions of the rat brain. Biochemical Pharmacology 27, 10491053.CrossRefGoogle Scholar
Maggi, A. & Enna, S. J. (1980). Regional alterations in rat brain neurotransmitter systems following chronic lithium treatment. Journal of Neurochemistry 34, 888892.CrossRefGoogle ScholarPubMed
Mandell, A. J. & Knapp, S. (1977). Regulation of serotonin bio-synthesis in brain: role of the high affinity uptake of tryptophan into serotonergic neurons. Federal Proceedings 36, 21422148.Google Scholar
Marsden, C. A. (1985). In vivo monitoring of pharmacological and physiological changes in endogenous serotonin release and metabolism. In Neuropharmacology of Serotonin (ed. Green, A. R.), pp. 218252. Oxford University Press: Oxford.Google Scholar
Mason, R. W., McQueen, E. G., Kèary, P. J. & James, N. McI. (1978). Pharmacokinetics of lithium: elimination half-times, renal clearance and apparent volume of distribution in schizophrenia. Clinical Pharmacokinetics 3, 241246.CrossRefGoogle ScholarPubMed
Meller, E. & Friedman, E. (1981). Lithium dissociates haloperidol induced behavioural supersensitivity from reduced DOPAC increase in rat striatum. European Journal of Pharmacology 76, 2529.CrossRefGoogle ScholarPubMed
Meltzer, H. L., Kassir, S., Dunner, D. L. & Fieve, R. R. (1977). Repression of lithium pump as a consequence of lithium ingestion by manic depressive subjects. Psychopharmacology 54, 113118.CrossRefGoogle ScholarPubMed
Mendels, P. J. & Frazer, A. (1973). Intracellular lithium concentration and clinical response. Toward a membrane theory of depression. Journal of Psychiatry Research 10, 918.CrossRefGoogle Scholar
Merry, J., Reynolds, C. M., Bailey, J. & Coppen, A. (1976). Prophylactic treatment of alcoholism by lithium: a controlled study. Lancet ii, 481482.CrossRefGoogle Scholar
Middlemiss, D. N., Fozard, J. R. (1983). 8-hydroxy-2-(di-n-propylamino) tetralin discriminates between subtypes of the 5-HT1 recognition site. European Journal of Pharmacology 90, 151153.CrossRefGoogle ScholarPubMed
Millington, W. R., McCall, A. L. & Wurtman, R. J. (1979). Lithium and brain choline levels. New England Journal of Medicine 300, 196197.Google ScholarPubMed
de Montigny, C., Cournoyer, G., Morrisette, R., Langlois, R. & Caille, G. (1983). Lithium carbonate addition in tricyclic antidepressant-resistant unipolar depression. Archives of General Psychiatry 40, 13271334.CrossRefGoogle ScholarPubMed
Naccarato, W. F., Ray, R. E. & Wells, W. W. (1974). Biosynthesis of myo-inositol in rat mammary gland: isolation and properties of the enzymes. Archives of Biochemistry and Biophysics 164, 194201.CrossRefGoogle ScholarPubMed
Naylor, G. J. & Smith, A. H. W. (1981). Defective genetic control of sodium pump density in manic depressive psychosis. Psychological Medicine 11, 257263.CrossRefGoogle ScholarPubMed
Naylor, G. J., Dick, D. A. T., Dick, E. G., Le Foidevin, D. & Whyte, S. F. (1973). Erythrocyte membrane cation carrier in depressive illness. Psychological Medicine 3, 502508.CrossRefGoogle ScholarPubMed
Naylor, G. J., Dick, D. A. T., Dick, E. G. & Moody, J. P. (1974). Lithium therapy and erythrocyte membrane cation carrier. Psychopharmacology 3, 8186.CrossRefGoogle Scholar
Naylor, G. J., Dick, D. A. T. & Dick, E. G. (1976 a). Erythrocyte membrane cation carrier, relapse rate of manic depressive illness and response to lithium. Psychological Medicine 6, 257263.CrossRefGoogle ScholarPubMed
Naylor, G. J., Dick, D. A. T., Dick, E. G., Worrall, E. P., Peet, M., Dick, P. & Boardman, L. J. (1976 b). Erythrocyte membrane cation carrier in mania. Psychological Medicine 6, 659663.CrossRefGoogle ScholarPubMed
Naylor, G. J., Smith, A. H. W., Boardman, L. J., Dick, D. A. T., Dick, E. G. & Dick, P. (1977). Lithium and erythrocyte membrane cation carrier studies in normal and manic depressive subjects. Psychological Medicine 7, 229233.CrossRefGoogle ScholarPubMed
Naylor, G. J., Dick, D. A. T., Johnston, B. B., Hopwood, S. E., Dick, E. G., Smith, A. H. W. & Kay, D. (1981). A possible explanation for the therapeutic action of lithium and a possible substitute (Methylene Blue). Lancet ii, 11751176.CrossRefGoogle Scholar
Newman, M., Klein, E., Birmaher, B., Feinsod, M. & Belmaker, R. H. (1983). Lithium at therapeutic concentration inhibits human brain noradrenaline-sensitive cyclic AMP accumulation. Brain Research 278, 380381.CrossRefGoogle ScholarPubMed
Nicoll, R. A. (1985). The septo-hippocampal projection: a model cholinergic pathway. Trends in Neurosciences 7, 533536.CrossRefGoogle Scholar
Nurnburger, J. Jr, Jimerson, D. C., Allen, J. R., Simmons, S. & Gershon, E. (1982). Red cell ouabain sensitive Na+-K+ Adenosine triphosphatase: a state marker in affective disorder inversely related to plasma cortisol. Biological Psychiatry 17, 981991.Google Scholar
Ostrow, D. G., Pandey, G. N., Davis, J. M., Hurt, S. W. & Tosteson, D. C. (1978). A heritable disorder of lithium transport in erythrocytes of a subpopulation of manic depressive patients. American Journal of Psychiatry 135, 10701078.Google ScholarPubMed
Otero Losada, M. E. & Rubio, M. C. (1985). Striatal dopamine and motor activity changes observed shortly after lithium administration. Naunyn Schmiedebergs Archives of Pharmacology 330, 169174.CrossRefGoogle ScholarPubMed
Palmer, G. C., Robinson, G. A., Manian, A. A. & Sulser, F. (1972). Modification by psychotrophic drugs of the cyclic adenosine monophosphate response to norepinephrine in rat brain. Psychopharmacologia 23, 201211.CrossRefGoogle Scholar
Pandey, G. N., Ostrow, D. G., Haas, M., Dorus, E., Casper, R. C., Davis, J. M. & Tosteson, D. C. (1977). Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family. Proceedings of the National Academy of Science of the USA 74, 36073611.CrossRefGoogle ScholarPubMed
Peroutka, S. J. & Snyder, S. H. (1980). Long-term antidepressant treatment decreases spiroperidol-labelled serotonin receptor binding. Science 210, 8890.CrossRefGoogle ScholarPubMed
Peroutka, S. J., Lebovitz, R. M. & Snyder, S. H. (1980). Two distinct central serotonin receptors with different physiological function. Science 212, 827829.CrossRefGoogle Scholar
Pert, A., Rosenblatt, J. E., Sivit, C., Pert, C. B. & Bunney, W. E. (1978). Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity. Science 201, 171173.CrossRefGoogle ScholarPubMed
Pestronk, A. & Drachman, D. B. (1980). Lithium reduces the number of acetylcholine receptors in skeletal muscle. Science 210, 342343.CrossRefGoogle ScholarPubMed
Pittman, K. J., Jakubovic, A. & Fibiger, H. C. (1984). The effect of chronic lithium on behavioural and biochemical indices of dopamine receptor supersensitivity in the rat. Psychopharmacology 82, 371377.CrossRefGoogle ScholarPubMed
Prien, R. F., Kupfer, D. J., Mansky, P. A., Small, J. G., Tuason, V. S., Voss, C. B. & Johnson, W. E. (1984). Drug therapy in the prevention of recurrences in unipolar and bipolar affective disorders. Archives of General Psychiatry 41, 10961104.CrossRefGoogle ScholarPubMed
Reeches, A., Ebstein, R. P. & Belmaker, R. H. (1978). The differential effects of lithium on noradrenaline and dopamine sensitive accumulation of cyclic AMP in guinea pig brain. Psychopharmacology 58, 213216.CrossRefGoogle Scholar
Reeches, A., Jackson-Lewis, V. & Fahn, S. (1984). Lithium does not interact with haloperidol in the dopaminergic pathway of the rat brain. Psychopharmacology 82, 330334.CrossRefGoogle Scholar
Rosenblatt, J. E., Pert, C. B., Tallman, J. F., Pert, A. & Bunney, W. E. (1979). The effect of imipramine and lithium on alphaand beta-receptor binding in rat brain. Brain Research 160, 186191.CrossRefGoogle Scholar
Rosenblatt, J. E., Pert, A., Layton, B. & Bunney, W. E. (1980). Chronic lithium reduces 3H-spiroperidol binding in rat striatum European Journal of Pharmacology 67, 321322.CrossRefGoogle Scholar
Rosenblatt, S., Gaull, G. E., Chanley, J. D., Rosenthal, J. S., Smith, H. & Sackozi, L. (1979). Amino acids in bipolar affective disorders: increased glycine levels in erythrocytes. American Journal of Psychiatry 136, 672674.Google ScholarPubMed
Rosenblatt, S., Leighton, W. P. & Chanley, J. D. (1982). Elevation of erythrocyte glycine levels during lithium treatment of affective disorders. Psychiatry Research 6, 203214.CrossRefGoogle ScholarPubMed
Russell, R. W., Pechnick, R. & Jope, R. S. (1981). Effects of lithium on behavioural reactivity: relation to increases in brain cholinergic activity. Psychopharmacdlogy 73, 120125.CrossRefGoogle ScholarPubMed
Rybakowski, J., Frazer, A. & Mendels, J. (1978). Lithium efflux from erythrocytes incubated in vitro during lithium carbonate administration. Communicatidns in Psychopharmacology 2, 105112.Google ScholarPubMed
Rybakowski, J., Potok, E. & Strzyzewski, W. (1980). The activity of the lithium sodium countertransport systems in erythrocytes in depression and mania. Journal of Affective Disorders 3, 5964.CrossRefGoogle Scholar
Samples, J. R., Janowsky, D. S. & Pechnick, R. (1977). Lethal effects of physostigmine plus lithium in rats. Psychopharmacology 52, 307309.CrossRefGoogle ScholarPubMed
Scatton, B., Bischoff, S., Dedek, J. & Korf, J. (1977). Regional effects of neuroleptics on dopamine metabolism and dopamine sensitive adenylate cyclase activity. European Journal of Pharmacology 44, 287295.CrossRefGoogle ScholarPubMed
Schultz, J. E., Siggins, G. R., Schocker, F. W., Turlic, M. & Bloom, F. E. (1981). Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta-receptor binding in rat cerebellum; electrophysiological and biochemical comparison. Journal of Pharmacology & Experimental Therapeutics 216, 2838.Google ScholarPubMed
Segal, D. S., Callaghan, M. & Mandell, A. J. (1975). Alterations in behaviour and catecholamine biosynthesis induced by lithium. Nature 254, 5859.CrossRefGoogle ScholarPubMed
Sengupta, N., Datta, S. C., Sengupta, D. & Bal, S. (1980). Platelet and erythrocyte membrane ATPase activity in depression and manic depressive illness. Psychiatry Research 3, 337344CrossRefGoogle ScholarPubMed
Shea, P. A., Small, J. G. & Hendrie, H. C. (1981). Elevation of choline and glycine in red blood cells of psychiatric patients due to lithium treatment. Biological Psychiatry 16, 825830.Google ScholarPubMed
Sheard, M. H., Marini, J. L., Bridges, G. I. & Wagner, E. (1976). The effect of lithium on impulsive aggressive behaviour in man. American Journal of Psychiatry 133, 14091413.Google ScholarPubMed
Shenker, A., Maayani, J., Weinstein, H. & Green, J. P. (1985). Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotryptamine and spiperone. European Journal of Pharmacology 109, 427429.CrossRefGoogle ScholarPubMed
Sherman, W. R., Munsell, L. Y., Gish, B. G. & Honchar, M. P. (1985). The effects of systemic administration of lithium on phosphoinositide metabolism in rat brain, kidney and testis. Journal of Neurochemistry 44, 798807.CrossRefGoogle ScholarPubMed
Shopsin, B., Kim, S. S. & Gershon, S. (1971). A controlled study of lithium vs chlorpromazine in acute schizophrenics. British Journal of Psychiatry 119, 435440.CrossRefGoogle ScholarPubMed
Sills, M. A., Wolfe, B. B. & Frazer, A. (1984). Determination of selective and non-selective compounds for the 5-HT1A and 5-HT2B receptor subtypes in rat frontal cortex. Journal of Pharmacology and Experimental Therapeutics 231, 480487.Google Scholar
Silverman, P. B. & Ho, B. T. (1981). Persistent behavioural effect of apomorphine in 6-hydroxy-dopamine-lesioned rats. Nature 294, 475477.CrossRefGoogle Scholar
Simon, J. R. & Kuhar, M. J. (1976). High affinity choline uptake: ionic and energy requirements. Journal of Neurochemistry 27, 9399.CrossRefGoogle ScholarPubMed
Singer, I., Rotenberg, D. & Puschett, J. B. (1972). Lithiuminduced nephrogenic diabetes insipidus: in vivo and in vitro studies. Journal of Clinical Investigation 51, 10811091.CrossRefGoogle ScholarPubMed
Small, J. G., Kellams, J. J., Milstein, V. & Moore, J. (1975). A placebo-controlled study of lithium combined with neuroleptics in chronic schizophrenic patients. American Journal of Psychiatry, 132, 13151317.Google ScholarPubMed
Smith, D. F. (1977). Lithium and animal behaviour Annual Research Reviews (ed. Horrobin, D. P.) 1, 166.Google Scholar
Staunton, D. A., Magistretti, P. J., Shoemaker, W. J. & Bloom, F. E. (1982 a). Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. I. Locomotor activity and behavioural supersensitivity. Brain Research 232, 391400.CrossRefGoogle Scholar
Staunton, D. A., Magistretti, P. J., Shoemaker, W. J. & Bloom, F. E. (1982 b). Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. II. No effect of denervation on neuroleptic induced supersensitivity. Brain Research 232, 401412.CrossRefGoogle ScholarPubMed
Stengaard-Pedersen, K. & Schou, M (1982). In vitro and in vivo inhibition by lithium of enkephalin binding to opiate receptors in rat brain. Neuropharmacology 21, 817823.CrossRefGoogle ScholarPubMed
Sugrue, M. F. (1981). Current concepts of the mechanisms of action of antidepressant drugs. Pharmacology & Therapeutics (B) 13, 219247.CrossRefGoogle ScholarPubMed
Sulser, F., Vetulani, J. & Mobley, P. L. (1978). Mode of action of antidepressant drugs. Biochemical Pharmacology 27, 257261.CrossRefGoogle ScholarPubMed
Swann, A. C., Marini, J. L., Sheard, M. H. & Maas, J. W. (1980). Effects of chronic dietary lithium on activity and regulation of (Na+, K+)-Adenosine Triphosphatase in rat brain. Biochemical Pharmacology 29, 28192823.CrossRefGoogle Scholar
Swann, A. C., Crawley, J. N., Grant, S. J. & Maas, J. W. (1981 a). Noradrenergic stimulation in vivo increases (Na+, K+)-adenosine triphosphatase activity. Life Science 28, 251256.CrossRefGoogle ScholarPubMed
Swann, A. C., Heninger, G. R., Roth, R. H. & Maas, J. W. (1981 b). Differential effects of short- and long-term lithium on tryptophan uptake and serotonergic function in cat brain. Life Science 28, 347354.CrossRefGoogle Scholar
Szentistvanyi, I. & Janka, Z. (1979). Sodium-dependent lithium efflux from red cells in affective disorders. Psychiatry Research 1, 265271.CrossRefGoogle ScholarPubMed
Tanaka, M., Kolno, Y., Nakagawa, R., Ida, Y., Limori, K., Hoaki, Y., Tsuda, A. & Nagasaki, N. (1982). Naloxone enhances stress induced increases in noradrenaline turnover in specific brain regions in rats. Life Science 30, 16631668.CrossRefGoogle ScholarPubMed
Tanimoto, K., Maeda, K. & Chihara, K. (1981). Inhibition by lithium of dopamine receptors in rat prolactin release. Brain Research 223, 335342.CrossRefGoogle ScholarPubMed
Tanimoto, K., Maeda, K. & Chihara, K. (1983). Antagonizing effects of lithium on the development of dopamine supersensitivity in the tuberoinfundibular system. Brain Research 245, 163166.CrossRefGoogle Scholar
Tollefson, G. D. & Senogles, S. E. (1982). A cholinergic role in the mechanism of lithium in mania. Biological Psychiatry 18, 467479.Google Scholar
Tollefson, G. D., Senogles, S. E. & Frey, W. H. (1982). Ionic regulation of antagonist binding to the human muscarinic cholinergic receptor of caudate nucleus. Journal of Psychiatry Research 17, 275283.CrossRefGoogle Scholar
Treiser, S. L., Cascio, C. S., O'Donohue, T. L., Thoa, N. B., Jacobowitz, D. M. & Kellar, K. J. (1981). Lithium increases serotonin release and decreases serotonin receptors in hippocampus. Science 213, 15291531.CrossRefGoogle Scholar
Tricklebank, M. D., Fowler, C. & Fozard, J. R. (1984). The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. European Journal of Pharmacology 106, 271282.CrossRefGoogle ScholarPubMed
Uney, J. B., Marchbanks, R. M & Marsh, A. (1985). The effect of lithium on choline transport in human erythrocytes. Journal of Neurology, Neurosurgery and Psychiatry 48, 229233.CrossRefGoogle ScholarPubMed
Vetulani, J. & Sulser, F. (1975). Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP generating system in limbic forebrain. Nature 257, 495496.CrossRefGoogle ScholarPubMed
Vizi, E. S., Illes, P., Ronai, A. & Knoll, J. (1972). Effect of lithium on acetylcholine release and synthesis. Neuropharmacology 11, 521530.CrossRefGoogle ScholarPubMed
Wajda, I. J., Banay-Schwartz, M., Manigault, I. & Lajtha, A. (1981). Effect of lithium and sodium ions on opiate and dopamine receptor binding. Neurochemical Research 6, 321331.CrossRefGoogle ScholarPubMed
Walker, J. B. (1974). The effect of lithium on hormone sensitive adenylate cyclase from various regions of rat brain. Biological Psychiatry 8, 245251.Google ScholarPubMed
Walz, W. & Hertz, L. (1982). Acute and chronic effects of lithium in therapeutically relevant concentrations on potassium uptake into astrocytes. Psychopharmacology 78, 309313.CrossRefGoogle ScholarPubMed
De Wardener, H. E. & Clarkson, E. M. (1985). Concept of natriuretic hormone. Physiological Reviews 65, 658758.CrossRefGoogle ScholarPubMed
Werstiuk, E., Rathbone, M. P. & Grof, P. (1981). Phloretin sensitive lithium-transport in erythrocytes of affectively ill patients: intra-individual reproducibility. Progress in Neuropsychopharmacology 5, 503506.CrossRefGoogle Scholar
Wolff, J., Berens, S. C. & Jones, A. B. (1970). Inhibition of thyrotropin-stimulated adenyl cyclase of beef thyroid by low concentration of lithium ion. Biochemical and Biophysical Research Communication 39, 7782.CrossRefGoogle ScholarPubMed
Wood, A. J., Goodwin, G. M., De Souza, R. J. & Green, A. R. (1986). The pharmacokinetic profile of lithium in rat and mouse: an important factor in the psychopharmacological investigation of the drug. Neuropharmacology 25, 12851288.CrossRefGoogle ScholarPubMed
Zatz, M. (1979). Low concentrations of lithium inhibit the synthesis of cyclic AMP and cyclic GMP in the rat pineal gland. Journal of Neurochemistry 32, 13151321.CrossRefGoogle ScholarPubMed