Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T09:13:01.103Z Has data issue: false hasContentIssue false

Relationships between cardiovascular and immunological changes in an experimental stress model

Published online by Cambridge University Press:  09 July 2009

R. J. Benschop*
Affiliation:
Departments of Immunology and Rheumatology, University Hospital, Utrecht, Department of Clinical and Health Psychology, Utrecht University, Janus Jongbloed Research Centre, Psychoimmunophysiology Section, Utrecht, Department of Immunology, University Hospital for Children and Youth ‘Het Wilhelmina Kinderziekenhuis’, Utrecht, The Netherlands
G. L. R. Godaert
Affiliation:
Departments of Immunology and Rheumatology, University Hospital, Utrecht, Department of Clinical and Health Psychology, Utrecht University, Janus Jongbloed Research Centre, Psychoimmunophysiology Section, Utrecht, Department of Immunology, University Hospital for Children and Youth ‘Het Wilhelmina Kinderziekenhuis’, Utrecht, The Netherlands
R. Geenen
Affiliation:
Departments of Immunology and Rheumatology, University Hospital, Utrecht, Department of Clinical and Health Psychology, Utrecht University, Janus Jongbloed Research Centre, Psychoimmunophysiology Section, Utrecht, Department of Immunology, University Hospital for Children and Youth ‘Het Wilhelmina Kinderziekenhuis’, Utrecht, The Netherlands
J. F. Brosschot
Affiliation:
Departments of Immunology and Rheumatology, University Hospital, Utrecht, Department of Clinical and Health Psychology, Utrecht University, Janus Jongbloed Research Centre, Psychoimmunophysiology Section, Utrecht, Department of Immunology, University Hospital for Children and Youth ‘Het Wilhelmina Kinderziekenhuis’, Utrecht, The Netherlands
M. B. M. De Smet
Affiliation:
Departments of Immunology and Rheumatology, University Hospital, Utrecht, Department of Clinical and Health Psychology, Utrecht University, Janus Jongbloed Research Centre, Psychoimmunophysiology Section, Utrecht, Department of Immunology, University Hospital for Children and Youth ‘Het Wilhelmina Kinderziekenhuis’, Utrecht, The Netherlands
M. Olff
Affiliation:
Departments of Immunology and Rheumatology, University Hospital, Utrecht, Department of Clinical and Health Psychology, Utrecht University, Janus Jongbloed Research Centre, Psychoimmunophysiology Section, Utrecht, Department of Immunology, University Hospital for Children and Youth ‘Het Wilhelmina Kinderziekenhuis’, Utrecht, The Netherlands
C. J. Heijnen
Affiliation:
Departments of Immunology and Rheumatology, University Hospital, Utrecht, Department of Clinical and Health Psychology, Utrecht University, Janus Jongbloed Research Centre, Psychoimmunophysiology Section, Utrecht, Department of Immunology, University Hospital for Children and Youth ‘Het Wilhelmina Kinderziekenhuis’, Utrecht, The Netherlands
R. E. Ballieux
Affiliation:
Departments of Immunology and Rheumatology, University Hospital, Utrecht, Department of Clinical and Health Psychology, Utrecht University, Janus Jongbloed Research Centre, Psychoimmunophysiology Section, Utrecht, Department of Immunology, University Hospital for Children and Youth ‘Het Wilhelmina Kinderziekenhuis’, Utrecht, The Netherlands
*
1Address for correspondence: Dr Robert J. Benschop, Hannover Medical School, Department of Clinical Immunology, 30623 Hannover, Germany.

Synopsis

To investigate the relationships between cardiovascular variables (SBP, DBP, and HR) and circulating natural killer (NK) cell numbers, 70 male volunteers were subjected to a rest condition (N = 30) or a stressful laboratory task (N = 40). At baseline, no significant relationships could be demonstrated between the number of NK cells and the cardiovascular variables. Analysis of covariance showed that the stressor induced increases in the number of NK cells, SBP, DBP, and HR. Changes in NK cell numbers were highly correlated to changes in cardiovascular variables in both the task and the no-task group. These results indicate that there is no relationship between the number of circulating NK cells and cardiovascular levels per se, but that changes in these variables, either stress-induced or under rest conditions, are regulated by a common mechanism.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. T. & Crowell, M. D. (1989). Patterns of autonomic response during laboratory stressors. Psychophysiology 26, 603614.CrossRefGoogle ScholarPubMed
Atherton, A. & Born, G. V. R. (1972). Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. Journal of Physiology 222, 447474.CrossRefGoogle ScholarPubMed
Benschop, R. J., Oostveen, F. G., Heijnen, C. J. & Ballieux, R. E. (1993). β2-Adrenergic stimulation causes detachment of natural killer cells from cultured endothelium. European Journal of Immunology 23, 32423247.CrossRefGoogle Scholar
Berntson, G. G., Cacioppo, J. T. & Quigley, K. S. (1993). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin 114, 296322.CrossRefGoogle ScholarPubMed
Brosschot, J. F., Smelt, D., de Smet, M. B. M., Heijnen, C. J., Olff, M., Ballieux, R. E. & Godaert, G. L. R. (1991). Effects of experimental psychological stress on T-lymphocytes and NK cells in man: an exploratory study. Journal of Psychophysiology 5, 5967.Google Scholar
Brosschot, J. F., Benschop, R. J., Godaert, G. L. R., de Smet, M. B. M., Olff, M., Heijnen, C. J. & Ballieux, R. E. (1992). Effects of experimental psychological stress on distribution and function of peripheral blood cells. Psychosomatic Medicine 54, 394406.CrossRefGoogle ScholarPubMed
Calabrese, J. R., Kling, M. A. & Gold, P. W. (1987). Alterations in immunocompetence during stress, bereavement, and depression: focus on neuroendocrine regulation. American Journal of Psychiatry 144, 11231134.Google ScholarPubMed
Crary, B., Hauser, S. L., Borysenko, M., Kutz, I., Hoban, C., Ault, K. A., Weiner, H. L. & Benson, H. (1983). Epinephrine-induced changes in the distribution of lymphocyte subsets in peripheral blood of humans. Journal of Immunology 131, 11781181.CrossRefGoogle ScholarPubMed
Dimsdale, J. E. & Moss, J. (1980). Short-term catecholamine response to psychological stress. Psychosomatic Medicine 42, 493497.CrossRefGoogle ScholarPubMed
Godaert, G. L. R., Hagenaars, J., Olff, M. & Brosschot, J. F. (1991). Psychological defence and cardiovascular responses to stress. In Quantification of Human Defence Mechanisms (ed. Olff, M., Godaert, G. L. R. and Ursin, H.), pp. 273281. Springer: Heidelberg.CrossRefGoogle Scholar
Guazzi, M., Fiorentini, C., Polese, A., Magrini, F. & Olivari, M. T. (1975). Stress-induced and sympathetically-mediated electrocardiographic and circulatory variations in the primary hyperkinetic heart syndrome. Cardiovascular Research 9, 342354.CrossRefGoogle ScholarPubMed
Jern, C., Wadenvink, H., Mark, H., Hallgren, J. & Jern, S. (1989). Haematological changes during acute mental stress. British Journal of Haematology 71, 153156.CrossRefGoogle ScholarPubMed
Julius, S. (1988). The blood pressure seeking properties of the central nervous system. Journal of Hypertension 6, 177185.CrossRefGoogle ScholarPubMed
Kappel, M., Tvede, N., Galbo, H., Haahr, P. M., Kjær, M., Linstow, M., Klarlund, K. & Pedersen, B. K. (1991). Evidence that the effect of physical exercise on NK cell activity is mediated by epinephrine. Journal of Applied Physiology 70, 25302534.CrossRefGoogle ScholarPubMed
Kirschbaum, C., Jabaaij, L., Buske-Kirschbaum, A., Hennig, J., Blom, M., Dorst, K., Bauch, J., DiPauli, R., Schmitz, G., Ballieux, R. E. & Hellhammer, D. H. (1992). Conditioning of drug-induced immunomodulation in human volunteers: a european collaborative study. British Journal of Clinical Psychology 31, 459472.CrossRefGoogle ScholarPubMed
Landmann, R. M. A., Müller, F. B., Perini, C. H., Wesp, M., Erne, P. & Bühler, F. R. (1984). Changes of immunoregulatory cells induced by psychological and physical stress: relationship to plasma catecholamines. Clinical and Experimental Immunology 58, 127135.Google ScholarPubMed
Langer, A. W., McCubbin, J. A., Stoney, C. M., Hutcheson, J. S., Charlton, J. D. & Obrist, P. A. (1985). Cardiopulmonary adjustments during exercise and an aversive reaction time task: effects of beta-adrenoceptor blockage. Psychophysiology 22, 5968.CrossRefGoogle Scholar
Lovallo, W. R., Pincomb, G. A., Brackett, D. J. & Wilson, M. F. (1990). Heart rate as a predictor of neuroendocrine responses to aversive and appetitive challenges. Psychosomatic Medicine 52, 1726.CrossRefGoogle ScholarPubMed
Mills, P. J. & Dimsdale, J. E. (1991). Cardiovascular reactivity to psychological stressors. Psychosomatics 32, 209220.CrossRefGoogle Scholar
Naliboff, B. D., Benton, D., Solomon, G. F., Morley, J. E., Fahey, J. L., Bloom, E. T., Makinodan, T. & Gilmore, S. L. (1991). Immunological changes in young and old adults during brief laboratory stress. Psychosomatic Medicine 53, 121132.CrossRefGoogle Scholar
Nestel, P. J. (1969). Blood-pressure and catecholamine excretion after mental stress in labile hypertension. Lancet i, 692694.CrossRefGoogle Scholar
Ottaway, C. A. & Husband, A. J. (1992). Central nervous system influences on lymphocyte migration. Brain, Behavior, and Immunity 6, 97116.CrossRefGoogle ScholarPubMed
Sherwood, A., Allen, M. T., Obrist, P. A. & Langer, A. W. (1986). Evaluation of beta-adrenergic influences on cardiovascular and metabolic adjustments to physical and psychological stress. Psychophysiology 23, 89104.CrossRefGoogle ScholarPubMed
Stein, M., Miller, A. H. & Trestman, R. L. (1991). Depression, the immune system, and health and illness. Archives of General Psychiatry 48, 171177.CrossRefGoogle ScholarPubMed
van Doornen, L. J. P. & de Geus, E. J. C. (1989). Aerobic fitness and the cardiovascular response to stress. Psychophysiology 26, 1728.CrossRefGoogle ScholarPubMed
van Tits, L. J. H., Michel, M. C., Grosse-Wilde, H., Happel, M., Eigler, F. -W., Soliman, A. & Brodde, O. -E. (1990). Catecholamines increase lymphocyte β2-adrenergic receptors via a β2-adrenergic, spleen-dependent process. American Journal of Physiology 258, E191E202.Google Scholar
Ward, M. M., Mefford, I. N., Parker, S. D., Chesney, M. A., Taylor, C. B., Keegan, D. L. & Barchas, J. D. (1983). Epinephrine and norepinephrine responses in continuously collected human plasma to a series of stressors. Psychosomatic Medicine 45, 471486.CrossRefGoogle ScholarPubMed
Wesseling, K. H., de Wit, B., Settels, J., Klawer, W. H. & Arntzenius, A. C. (1982). On the direct registration of finger blood pressure after Peñáz. Funktionelle Biologie und Medizin 1, 245250.Google Scholar
Whiteside, T. L. & Herberman, R. B. (1989). The role of natural killer cells in human disease. Clinical Immunology and Immunopathology 53, 123.CrossRefGoogle ScholarPubMed