Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T06:54:51.277Z Has data issue: false hasContentIssue false

A randomized trial of aerobic exercise for major depression: examining neural indicators of reward and cognitive control as predictors and treatment targets

Published online by Cambridge University Press:  24 August 2020

C. J. Brush*
Affiliation:
Department of Psychology, Florida State University, Tallahassee, FL, USA Department of Kinesiology and Health and Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
Greg Hajcak
Affiliation:
Department of Psychology, Florida State University, Tallahassee, FL, USA
Anthony J. Bocchine
Affiliation:
Department of Kinesiology and Health and Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
Andrew A. Ude
Affiliation:
Department of Kinesiology and Health and Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
Kristina M. Muniz
Affiliation:
Department of Kinesiology and Health and Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA Department of Psychiatry and Neurobehavioral Sciences, Division of Child and Family Psychiatry, University of Virginia Health System, Charlottesville, VA, USA
Dan Foti
Affiliation:
Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
Brandon L. Alderman
Affiliation:
Department of Kinesiology and Health and Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
*
Author for correspondence: C. J. Brush, E-mail: [email protected]

Abstract

Background

Aerobic exercise has demonstrated antidepressant efficacy among adults with major depression. There is a poor understanding of the neural mechanisms associated with these effects. Deficits in reward processing and cognitive control may be two candidate targets and predictors of treatment outcome to exercise in depression.

Methods

Sixty-six young adults aged 20.23 years (s.d. = 2.39) with major depression were randomized to 8 weeks of moderate-intensity aerobic exercise (n = 35) or light stretching (n = 31). Depressive symptoms were assessed across the intervention to track symptom reduction. Reward processing [reward positivity (RewP)] and cognitive control [error-related negativity (ERN)] were assessed before and after the intervention using event-related brain potentials.

Results

Compared to stretching, aerobic exercise resulted in greater symptom reduction (gs = 0.66). Aerobic exercise had no impact on the RewP (gav = 0.08) or ERN (gav = 0.21). In the aerobic exercise group, individuals with a larger pre-treatment RewP [odds ratio (OR) = 1.45] and increased baseline depressive symptom severity (OR = 1.18) were more likely to respond to an aerobic exercise program. Pre-treatment ERN did not predict response (OR = 0.74).

Conclusions

Aerobic exercise is effective in alleviating depressive symptoms in adults with major depression, particularly for those with increased depressive symptom severity and a larger RewP at baseline. Although aerobic exercise did not modify the RewP or ERN, there is preliminary support for the utility of the RewP in predicting who is most likely to respond to exercise as a treatment for depression.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akil, H., Gordon, J., Hen, R., Javitch, J., Mayberg, H., McEwen, B., … Nestler, E. J. (2018). Treatment resistant depression: A multi-scale, systems biology approach. Neuroscience and Biobehavioral Reviews, 84, 272288.CrossRefGoogle ScholarPubMed
Alderman, B. L., Olson, R. L., Bates, M. E., Selby, E. A., Buckman, J. F., Brush, C. J., … Shors, T. J. (2015). Rumination in major depressive disorder is associated with impaired neural activation during conflict monitoring. Frontiers in Human Neuroscience, 9, 269.CrossRefGoogle ScholarPubMed
Alderman, B. L., Olson, R. L., & Brush, C. J. (2019). Using event-related potentials to study the effects of chronic exercise on cognitive function. International Journal of Sport and Exercise Psychology, 17(2), 106116.CrossRefGoogle Scholar
Alderman, B. L., Olson, R. L., Brush, C. J., & Shors, T. J. (2016). MAP Training: Combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity. Translational Psychiatry, 6(2), e726.CrossRefGoogle ScholarPubMed
American College of Sports Medicine. (2018). ACSM's exercise testing and prescription (Tenth ed.). Philadelphia, PA: Wolters Kluwer Health.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author. https://doi.org/10.1176/appi.books.9780890425596.Google Scholar
Babyak, M., Blumenthal, J. A., Herman, S., Khatri, P., Doraiswamy, M., Moore, K., … Krishnan, K. R. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62(5), 633638.CrossRefGoogle ScholarPubMed
Baldwin, S. A., Larson, M. J., & Clayson, P. E. (2015). The dependability of electrophysiological measurements of performance monitoring in a clinical sample: A generalizability and decision analysis of the ERN and Pe. Psychophysiology, 52(6), 790800.CrossRefGoogle Scholar
Barch, D. M., Whalen, D., Gilbert, K., Kelly, D., Kappenman, E. S., Hajcak, G., & Luby, J. L. (2019). Neural indicators of anhedonia: Predictors and mechanisms of treatment change in a randomized clinical trial in early childhood depression. Biological Psychiatry, 85(10), 863871.CrossRefGoogle Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck depression inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Becker, M. P. I., Nitsch, A. M., Miltner, W. H. R., & Straube, T. (2014). A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. Journal of Neuroscience, 34(8), 30053012.CrossRefGoogle Scholar
Blumenthal, J. A., Babyak, M. A., Moore, K. A., Craighead, W. E., Herman, S., Khatri, P., … Appelbaum, M. (1999). Effects of exercise training on older patients with major depression. Archives of Internal Medicine, 159(19), 23492356.CrossRefGoogle ScholarPubMed
Borg, G. A. (1998). Borg's perceived exertion and pain scales. Champaign, IL: Human Kinetics.Google Scholar
Brázdil, M., Roman, R., Daniel, P., & Rektor, I. (2005). Intracerebral error-related negativity in a simple go/nogo task. Journal of Psychophysiology, 19(4), 244255.CrossRefGoogle Scholar
Bress, J. N., Meyer, A., & Proudfit, G. H. (2015). The stability of the feedback negativity and its relationship with depression during childhood and adolescence. Development and Psychopathology, 27(4pt1), 12851294.CrossRefGoogle ScholarPubMed
Brush, C. J., Ehmann, P. J., Hajcak, G., Selby, E. A., & Alderman, B. L. (2018). Using multilevel modeling to examine blunted neural responses to reward in major depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(12), 10321039.Google ScholarPubMed
Brush, C. J., Olson, R. L., Ehmann, P. J., Bocchine, A. J., Bates, M. E., Buckman, J. F., … Alderman, B. L. (2019). Lower resting cardiac autonomic balance in young adults with current major depression. Psychophysiology, 56(8), e13385.CrossRefGoogle ScholarPubMed
Burani, K., Mulligan, E. M., Klawohn, J., Luking, K. R., Nelson, B. D., & Hajcak, G. (2019). Longitudinal increases in reward-related neural activity in early adolescence: Evidence from event-related potentials (ERPs). Developmental Cognitive Neuroscience, 36, 100620.CrossRefGoogle Scholar
Burkhouse, K. L., Gorka, S. M., Klumpp, H., Kennedy, A. E., Karich, S., Francis, J., … Shankman, S. A. (2018). Neural responsiveness to reward as an index of depressive symptom change following cognitive-behavioral therapy and selective serotonin reuptake inhibitor treatment. The Journal of Clinical Psychiatry, 79(4), 17m11836.CrossRefGoogle Scholar
Burkhouse, K. L., Kujawa, A., Kennedy, A. E., Shankman, S. A., Langenecker, S. A., Phan, K. L., & Klumpp, H. (2016). Neural reactivity to reward as a predictor of cognitive behavioral therapy response in anxiety and depression. Depression and Anxiety, 33(4), 281288.CrossRefGoogle ScholarPubMed
Carlson, J. M., Foti, D., Mujica-Parodi, L. R., Harmon-Jones, E., & Hajcak, G. (2011). Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study. NeuroImage, 57(4), 16081616.CrossRefGoogle ScholarPubMed
Chiu, P. H., & Deldin, P. J. (2007). Neural evidence for enhanced error detection in major depressive disorder. The American Journal of Psychiatry, 164(4), 608616.CrossRefGoogle ScholarPubMed
Cohen, Z. D., & DeRubeis, R. J. (2018). Treatment selection in depression. Annual Review of Clinical Psychology, 14(1), 209236.CrossRefGoogle ScholarPubMed
Cooney, G. M., Dwan, K., Greig, C. A., Lawlor, D. A., Rimer, J., Waugh, F. R., … Mead, G. E. (2013). Exercise for depression. Cochrane Database of Systematic Reviews, 9, CD004366. https://doi.org/10.1002/14651858.CD004366.pub6.Google Scholar
Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., … Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine & Science in Sports & Exercise, 35(8), 13811395.CrossRefGoogle Scholar
Dimeo, F., Bauer, M., Varahram, I., Proest, G., & Halter, U. (2001). Benefits from aerobic exercise in patients with major depression: A pilot study. British Journal of Sports Medicine, 35(2), 114117.CrossRefGoogle ScholarPubMed
Dunn, A. L., Trivedi, M. H., Kampert, J. B., Clark, C. G., & Chambliss, H. O. (2005). Exercise treatment for depression: Efficacy and dose response. American Journal of Preventive Medicine, 28(1), 18.CrossRefGoogle ScholarPubMed
Ekkekakis, P. (2015). Honey, I shrunk the pooled SMD! guide to critical appraisal of systematic reviews and meta-analyses using the Cochrane review on exercise for depression as example. Mental Health and Physical Activity, 8, 2136.CrossRefGoogle Scholar
Flack, K., Pankey, C., Ufholz, K., Johnson, L., & Roemmich, J. N. (2019). Genetic variations in the dopamine reward system influence exercise reinforcement and tolerance for exercise intensity. Behavioural Brain Research, 375, 112148.CrossRefGoogle ScholarPubMed
Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. NeuroImage, 101, 5058.CrossRefGoogle ScholarPubMed
Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata, L. B., … Etkin, A. (2015). Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry, 72(4), 305315.CrossRefGoogle ScholarPubMed
Greer, T. L., Grannemann, B. D., Chansard, M., Karim, A. I., & Trivedi, M. H. (2015). Dose-dependent changes in cognitive function with exercise augmentation for major depression: Results from the TREAD study. European Neuropsychopharmacology, 25(2), 248256.CrossRefGoogle ScholarPubMed
Hajcak, G., Franklin, M. E., Foa, E. B., & Simons, R. F. (2008). Increased error-related brain activity in pediatric obsessive-compulsive disorder before and after treatment. American Journal of Psychiatry, 165(1), 116123.CrossRefGoogle ScholarPubMed
Hajcak, G., Klawohn, J., & Meyer, A. (2019). The utility of event-related potentials in clinical psychology. Annual Review of Clinical Psychology, 15, 7195.CrossRefGoogle ScholarPubMed
Holmes, A. J., & Pizzagalli, D. A. (2010). Effects of task-relevant incentives on the electrophysiological correlates of error processing in major depressive disorder. Cognitive, Affective, & Behavioral Neuroscience, 10(1), 119128.CrossRefGoogle ScholarPubMed
Keren, H., O'Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … Pine, D. S. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry, 175(11), 11111120.CrossRefGoogle ScholarPubMed
Klawohn, J., Burani, K., Bruchnak, A., Santopetro, N., & Hajcak, G. (2020a). Reduced neural response to reward and pleasant pictures independently relate to depression. Psychological Medicine, 19. doi:10.1017/S0033291719003659.Google Scholar
Klawohn, J., Santopetro, N. J., Meyer, A., & Hajcak, G. (2020b). Reduced P300 in depression: Evidence from a flanker task and impact on ERN, CRN, and Pe. Psychophysiology, 57(4), e13520.CrossRefGoogle Scholar
Knubben, K., Reischies, F. M., Adli, M., Schlattmann, P., Bauer, M., & Dimeo, F. (2007). A randomised, controlled study on the effects of a short-term endurance training programme in patients with major depression. British Journal of Sports Medicine, 41(1), 2933.CrossRefGoogle Scholar
Kujawa, A., Burkhouse, K. L., Karich, S. R., Fitzgerald, K. D., Monk, C. S., & Phan, K. L. (2019). Reduced reward responsiveness predicts change in depressive symptoms in anxious children and adolescents following treatment. Journal of Child and Adolescent Psychopharmacology, 29(5), 378385.CrossRefGoogle ScholarPubMed
Kujawa, A., Weinberg, A., Bunford, N., Fitzgerald, K. D., Hanna, G. L., Monk, C. S., … Phan, K. L. (2016). Error-related brain activity in youth and young adults before and after treatment for generalized or social anxiety disorder. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 71, 162168.CrossRefGoogle ScholarPubMed
Ladouceur, C. D., Slifka, J. S., Dahl, R. E., Birmaher, B., Axelson, D. A., & Ryan, N. D. (2012). Altered error-related brain activity in youth with major depression. Developmental Cognitive Neuroscience, 2(3), 351362.CrossRefGoogle ScholarPubMed
Levinson, A. R., Speed, B. C., Infantolino, Z. P., & Hajcak, G. (2017). Reliability of the electrocortical response to gains and losses in the doors task. Psychophysiology, 54(4), 601607.CrossRefGoogle ScholarPubMed
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146157.CrossRefGoogle Scholar
MacRae, P. G., Spirduso, W. W., Walters, T. J., Farrar, R. P., & Wilcox, R. E. (1987). Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology, 92(2), 236240.CrossRefGoogle ScholarPubMed
Martinsen, E. W., Hoffart, A., & Solberg, Ø. (1989). Comparing aerobic with nonaerobic forms of exercise in the treatment of clinical depression: A randomized trial. Comprehensive Psychiatry, 30(4), 324331.CrossRefGoogle ScholarPubMed
McClintock, S. M., Husain, M. M., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Trivedi, M. H., … Rush, A. J. (2011). Residual symptoms in depressed outpatients who respond by 50% but do not remit to antidepressant medication. Journal of Clinical Psychopharmacology, 31(2), 180186.CrossRefGoogle Scholar
Meyer, A., & Hajcak, G. (2019). A review examining the relationship between individual differences in the error-related negativity and cognitive control. International Journal of Psychophysiology, 144, 713.CrossRefGoogle ScholarPubMed
Meyer, A., Riesel, A., & Proudfit, G. H. (2013). Reliability of the ERN across multiple tasks as a function of increasing errors. Psychophysiology, 50(12), 12201225.CrossRefGoogle ScholarPubMed
Miltner, W. H. R., Lemke, U., Weiss, T., Holroyd, C., Scheffers, M. K., & Coles, M. G. H. (2003). Implementation of error-processing in the human anterior cingulate cortex: A source analysis of the magnetic equivalent of the error-related negativity. Biological Psychology, 64(1–2), 157166.CrossRefGoogle ScholarPubMed
Olson, R. L., Brush, C. J., Ehmann, P. J., & Alderman, B. L. (2017). A randomized trial of aerobic exercise on cognitive control in major depression. Clinical Neurophysiology, 128(6), 903913.CrossRefGoogle ScholarPubMed
Papakostas, G. I., & Fava, M. (2010). Pharmacotherapy for depression and treatment-resistant depression. Singapore: World Scientific.CrossRefGoogle Scholar
Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36(1), 183206.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A. (2014). Depression, stress, and anhedonia: Toward a synthesis and integrated model. Annual Review of Clinical Psychology, 10(1), 393423.CrossRefGoogle Scholar
Porter, R. J., Bowie, C. R., Jordan, J., & Malhi, G. S. (2013). Cognitive remediation as a treatment for major depression: A rationale, review of evidence and recommendations for future research. The Australian and New Zealand Journal of Psychiatry, 47(12), 11651175.CrossRefGoogle ScholarPubMed
Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449459.CrossRefGoogle ScholarPubMed
R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Rethorst, C. D., South, C. C., Rush, A. J., Greer, T. L., & Trivedi, M. H. (2017). Prediction of treatment outcomes to exercise in patients with nonremitted major depressive disorder. Depression and Anxiety, 34(12), 11161122.CrossRefGoogle ScholarPubMed
Rethorst, C. D., Toups, M. S., Greer, T. L., Nakonezny, P. A., Carmody, T. J., Grannemann, B. D., … Trivedi, M. H. (2013). Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Molecular Psychiatry, 18(10), 11191124.CrossRefGoogle ScholarPubMed
Riesel, A., Weinberg, A., Endrass, T., Meyer, A., & Hajcak, G. (2013). The ERN is the ERN is the ERN? Convergent validity of error-related brain activity across different tasks. Biological Psychology, 93(3), 377385.CrossRefGoogle ScholarPubMed
Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive mechanisms of treatment in depression. Neuropsychopharmacology, 37(1), 117136.CrossRefGoogle ScholarPubMed
Ruchsow, M., Herrnberger, B., Wiesend, C., Grön, G., Spitzer, M., & Kiefer, M. (2004). The effect of erroneous responses on response monitoring in patients with major depressive disorder: A study with event-related potentials. Psychophysiology, 41(6), 833840.CrossRefGoogle ScholarPubMed
Schoenberg, P. L. A. (2014). The error processing system in major depressive disorder: Cortical phenotypal marker hypothesis. Biological Psychology, 99, 100114.CrossRefGoogle ScholarPubMed
Schrijvers, D., de Bruijn, E. R. A., Maas, Y., De Grave, C., Sabbe, B. G. C., & Hulstijn, W. (2008). Action monitoring in major depressive disorder with psychomotor retardation. Cortex, 44(5), 569579.CrossRefGoogle ScholarPubMed
Schuch, F. B., Dunn, A. L., Kanitz, A. C., Delevatti, R. S., & Fleck, M. P. (2016a). Moderators of response in exercise treatment for depression: A systematic review. Journal of Affective Disorders, 195, 4049.CrossRefGoogle Scholar
Schuch, F. B., Vancampfort, D., Richards, J., Rosenbaum, S., Ward, P. B., & Stubbs, B. (2016b). Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. Journal of Psychiatric Research, 77, 4251.CrossRefGoogle Scholar
Schuch, F. B., Vasconcelos-Moreno, M. P., Borowsky, C., Zimmermann, A. B., Rocha, N. S., & Fleck, M. P. (2015). Exercise and severe major depression: Effect on symptom severity and quality of life at discharge in an inpatient cohort. Journal of Psychiatric Research, 61, 2532.CrossRefGoogle Scholar
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-international neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl 20), 2233; quiz 34–57.Google ScholarPubMed
Steer, R. A., & Beck, A. T.. (1997). Beck anxiety inventory. In Zalaquett, C. P, & Wood, R. J. (Eds.), Evaluating stress: A book of resources (pp. 2340). Lanham, MD: Scarecrow Press.Google Scholar
Stillman, C. M., Esteban-Cornejo, I., Brown, B., Bender, C. M., & Erickson, K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends in Neurosciences, 43(7), 533543.CrossRefGoogle ScholarPubMed
Stubbs, B., Rosenbaum, S., Vancampfort, D., Ward, P. B., & Schuch, F. B. (2016). Exercise improves cardiorespiratory fitness in people with depression: A meta-analysis of randomized control trials. Journal of Affective Disorders, 190, 249253.CrossRefGoogle ScholarPubMed
Suterwala, A. M., Rethorst, C. D., Carmody, T. J., Greer, T. L., Grannemann, B. D., Jha, M., & Trivedi, M. H. (2016). Affect following first exercise session as a predictor of treatment response in depression. Journal of Clinical Psychiatry, 77(8), 10361042.CrossRefGoogle ScholarPubMed
Tang, Y., Zhang, X., Simmonite, M., Li, H., Zhang, T., Guo, Q., … Wang, J. (2013). Hyperactivity within an extensive cortical distribution associated with excessive sensitivity in error processing in unmedicated depression: A combined event-related potential and sLORETA study. International Journal of Psychophysiology, 90(2), 282289.CrossRefGoogle ScholarPubMed
Thomas, S., Reading, J., & Shephard, R. J. (1992). Revision of the physical activity readiness questionnaire (PAR-Q). Canadian Journal of Sport Sciences, 17(4), 338345.Google Scholar
Toups, M., Carmody, T., Greer, T., Rethorst, C., Grannemann, B., & Trivedi, M. H. (2017). Exercise is an effective treatment for positive valence symptoms in major depression. Journal of Affective Disorders, 209, 188194.CrossRefGoogle ScholarPubMed
Trivedi, M. H., McGrath, P. J., Fava, M., Parsey, R. V., Kurian, B. T., Phillips, M. L., … Weissman, M. M. (2016). Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. Journal of Psychiatric Research, 78, 1123.CrossRefGoogle ScholarPubMed
Trivedi, M. H., Rush, A. J., Wisniewski, S. R., Nierenberg, A. A., Warden, D., Ritz, L., … Fava, M., & STAR*D Study Team. (2006). Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. American Journal of Psychiatry, 163(1), 2840.CrossRefGoogle ScholarPubMed
van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: FMRI and ERP studies. Physiology & Behavior, 77(4–5), 477482.CrossRefGoogle ScholarPubMed
Vittengl, J. R., Clark, L. A., Dunn, T. W., & Jarrett, R. B. (2007). Reducing relapse and recurrence in unipolar depression: A comparative meta-analysis of cognitive-behavioral therapy's effects. Journal of Consulting and Clinical Psychology, 75(3), 475488.CrossRefGoogle ScholarPubMed
Weinberg, A., Dieterich, R., & Riesel, A. (2015). Error-related brain activity in the age of RDoC: A review of the literature. International Journal of Psychophysiology, 98(2, Part 2), 276299.CrossRefGoogle ScholarPubMed
World Health Organization. (2004). ICD-10: International statistical classification of diseases and related health problems: Tenth revision. (2nd ed.). Geneva, Switzerland: Author. http://www.who.int/classifications/icd/icdonlineversions/en/.Google Scholar
World Health Organization. (2020, January 30). Depression fact sheet. https://www.who.int/en/news-room/fact-sheets/detail/depression.Google Scholar
Supplementary material: File

Brush et al. supplementary material

Brush et al. supplementary material

Download Brush et al. supplementary material(File)
File 647 KB