Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-31T23:18:35.018Z Has data issue: false hasContentIssue false

Psychometric properties of DSM assessments of illicit drug abuse and dependence: results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC)

Published online by Cambridge University Press:  04 April 2007

M. T. LYNSKEY*
Affiliation:
Washington University School of Medicine, Department of Psychiatry, St Louis, MO, USA
A. AGRAWAL
Affiliation:
Washington University School of Medicine, Department of Psychiatry, St Louis, MO, USA
*
*Address for correspondence: Michael T. Lynskey, Ph.D., Washington University School of Medicine, Department of Psychiatry, 660 S. Euclid, Box 8134, St. Louis, MO 63110, USA. (Email: [email protected])

Abstract

Background

DSM-IV criteria for illicit drug abuse and dependence are largely based on criteria developed for alcohol use disorders and there is a lack of research evidence on the psychometric properties of these symptoms when applied to illicit drugs.

Method

This study utilizes data on abuse/dependence criteria for cannabis, cocaine, stimulants, sedatives, tranquilizers, opiates, hallucinogens and inhalants from the National Epidemiological Survey on Alcohol and Related Conditions (NESARC, n=43 093). Analyses included factor analysis to explore the dimensionality of illicit drug abuse and dependence criteria, calculation of item difficulty and discrimination within an item response framework and a descriptive analysis of ‘diagnostic orphans’: individuals meeting criteria for 1–2 dependence symptoms but not abuse. Rates of psychiatric disorders were compared across groups.

Results

Results favor a uni-dimensional construct for abuse/dependence on each of the eight drug classes. Factor loadings, item difficulty and discrimination were remarkably consistent across drug categories. For each drug category, between 29% and 51% of all individuals meeting criteria for at least one symptom did not receive a formal diagnosis of either abuse or dependence and were therefore classified as ‘orphans’. Mean rates of disorder in these individuals suggested that illicit drug use disorders may be more adequately described along a spectrum of severity.

Conclusions

While there were remarkable similarities across categories of illicit drugs, consideration of item difficulty suggested that some alterations to DSM regarding the relevant severity of specific abuse and dependence criteria may be warranted.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, A. & Lynskey, M. T. (in press). Does gender contribute to heterogeneity in criteria of cannabis abuse and dependence? Results from the National Epidemiologic Survey of Alcohol and Related Conditions. Drug and Alcohol Dependence.Google Scholar
APA (1994). Diagnostic and Statistical Manual of Mental Disorders (4th edn, revised). American Psychiatric Association: Washington, DC.Google Scholar
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin 107, 238246.Google Scholar
Birnbaum, A. (1968). Some latent trait models. In: Statistical Theory of Mental Test Scores (ed. Lord, F. M. and Norvick, M. R.), pp. 397472. Addison-Wesley: Reading, MA.Google Scholar
Budney, A. J. (2006). Are specific dependence criteria necessary for different substances: how can research on cannabis inform this issue? Addiction 101 (Suppl. 1), 125133.Google Scholar
Budney, A. J., Hughes, J. R., Moore, B. A. & Vandrey, R. (2004). Review of the validity and significance of cannabis withdrawal syndrome. American Journal of Psychiatry 161, 19671977.CrossRefGoogle ScholarPubMed
Collins, R. L., Ellickson, P. L. & Bell, R. M. (1998). Simultaneous polydrug use among teens: Prevalence and predictors. Journal of Substance Abuse 10, 233253.CrossRefGoogle ScholarPubMed
Conway, K. P., Compton, W., Stinson, F. S. & Grant, B. F. (2006). Lifetime comorbidity of DSM-IV mood and anxiety disorders and specific drug use: results from the National Epidemiologic Survey on Alcohol and related Conditions. Journal of Clinical Psychiatry 67, 247257.CrossRefGoogle ScholarPubMed
Dawson, D. A., Grant, B. F., Stinson, F. S. & Zhou, Y. (2005). Effectiveness of the derived Alcohol Use Disorders Identification Test (AUDIT-C) in screening for alcohol use disorders and risk drinking in the US general population. Alcoholism Clinical and Experimental Research 29, 844854.Google Scholar
Degenhardt, L., Lynskey, M. T., Coffey, C. & Patton, G. (2002). Diagnostic orphans among young adult cannabis users: Persons who report dependence symptoms but do not meet diagnostic criteria. Drug and Alcohol Dependence 67, 205212.Google Scholar
Degenhardt, L., Lynskey, M. & Hall, W. (2000). Cohort trends in the age of initiation of drug use in Australia. Australian and New Zealand Journal of Public Health 24, 421426.Google Scholar
Denson, T. F. & Earleywine, M. (2006). Pothead or pot smoker? a taxometric investigation of cannabis dependence. Substance Abuse Treatment, Prevention, and Policy 10, 122.Google Scholar
Earleywine, M. & Newcomb, M. D. (1997). Concurrent versus simultaneous polydrug use: Prevalence, correlates, discriminant validity, and prospective effects on health outcomes. Experimental and Clinical Psychopharmacology 5, 353364.CrossRefGoogle ScholarPubMed
Edwards, G. G. & Gross, M. (1976). Alcohol dependence: provisional description of a clinical syndrome. British Medical Journal 1, 10581061.CrossRefGoogle ScholarPubMed
Eng, M. Y., Schuckit, M. A. & Smith, T. L. (2003). A five-year prospective study of diagnostic orphans for alcohol use disorders. Journal of Studies on Alcohol 64, 227234.Google Scholar
Feingold, A. & Rounsaville, B. J. (1995). Construct validity of the dependence syndrome as measured by DSM-IV for different psychoactive substances. Addiction 90, 16611669.CrossRefGoogle ScholarPubMed
Gillespie, N. A., Neale, M. C., Prescott, C. A., Aggen, S. H. & Kendler, K. S. (in press). Factor and item-response analysis of DSM-IV criteria for abuse and dependence on cannabis, cocaine, hallucinogens, sedatives, stimulants and opiates. Addiction.Google Scholar
Grant, B. F., Dawson, D. A., Stinson, F. S., Chou, P. S., Kay, W. & Pickering, R. (2003 a). The Alcohol Use Disorder and Associated Disabilities Interview Schedule-IV (AUDADIS-IV): reliability of alcohol consumption, tobacco use, family history of depression and psychiatric diagnostic modules in a general population sample. Drug and Alcohol Dependence 71, 716.CrossRefGoogle Scholar
Grant, B. F., Harford, T. C., Dawson, D. A., Chou, P. S. & Pickering, R. (1995). The Alcohol Use Disorder and Associated Disabilities Interview schedule (AUDADIS): reliability of alcohol and drug modules in a general population sample. Drug and Alcohol Dependence 39, 3744.CrossRefGoogle Scholar
Grant, B. F., Kaplan, K., Shepard, J. & Moore, T. (2003 b). Source and Accuracy Statement for Wave 1 of the 2001–2002. National Epidemiological Survey on Alcohol and Related Conditions. National Institute on Alcohol Abuse and Alcoholism: Bethesda, MD.Google Scholar
Grant, J. D., Scherrer, J. F., Neuman, R. J., Todorov, A. A., Price, R. K. & Bucholz, K. K. (2006). A comparison of the latent class structure of cannabis problems among adult men and women who have used cannabis repeatedly. Addiction 101, 11331142.CrossRefGoogle ScholarPubMed
Hasin, D. S., Grant, B. F., Harford, T. C. & Endicott, J. (1988). The drug dependence syndrome and related disabilities. British Journal of Addiction 83, 4555.CrossRefGoogle ScholarPubMed
Hasin, D. & Paykin, A. (1998). Dependence symptoms but no diagnosis: diagnostic ‘orphans’ in a community sample. Drug and Alcohol Dependence 50, 1926.CrossRefGoogle Scholar
Hasin, D. & Paykin, A. (1999). Dependence symptoms but no diagnosis: diagnostic ‘orphans’ in a 1992 national sample. Drug and Alcohol Dependence 53, 215222.Google Scholar
Heath, A. C., Martin, N. G., Lynskey, M. T., Todorov, A. A. & Madden, P. A. (2002) Estimating two-stage models for genetic influences on alcohol, tobacco or drug use initiation and dependence vulnerability in twin and family data. Twin Research 5, 113124.CrossRefGoogle ScholarPubMed
Helzer, J. E., van den Brink, W. & Guth, S. E. (2006). Should there be both categorical and dimensional criteria for the substance use disorders in DSM-V? Addiction 101, 1722.Google Scholar
Hughes, J. R. (2006). Should criteria for drug dependence differ across drugs? Addiction 101 (Suppl. 1), 134141.Google Scholar
Johnson, R. A. & Gerstein, D. R. (1998). Initiation of use of alcohol, cigarettes, marijuana, cocaine, and other substances in US birth cohorts since 1919. American Journal of Public Health 88, 2733.Google Scholar
Kendler, K. S., Neale, M. C., Sullivan, P., Corey, L. A., Gardner, C. O. & Prescott, C. A. (1999). A population-based twin study in women of smoking initiation and nicotine dependence. Psychological Medicine 29, 299308.CrossRefGoogle ScholarPubMed
Kosten, T. R., Rounsaville, B. J., Babor, T. F., Spitzer, R. L. & Williams, J. B. (1987). Substance use disorders in DSM-III-R: evidence for the dependence syndrome across different psychoactive substances. British Journal of Psychiatry 151, 834843.CrossRefGoogle ScholarPubMed
Langenbucher, J., Labouvie, E. W., Martin, C., Sanjuan, P. M., Bavly, L., Kirisci, L. & Chung, T. (2004). An application of item response theory analysis to alcohol, cannabis and cocaine criteria in DSM-IV. Journal of Abnormal Psychology 113, 7280.CrossRefGoogle ScholarPubMed
MacIntosh, R. & Hashim, S. (2003). Variance estimation for converting MIMIC model parameters to IRT parameters in DIF analysis. Applied Psychological Measurements 27, 372379.CrossRefGoogle Scholar
McCutcheon, A. L. (1987). Latent Class Analysis. Sage: Newbury Park, CA.Google Scholar
Meehl, P. E. (1995). Bootstraps taxometrics: solving the classification problem in psychopathology. American Psychologist 50, 266275.CrossRefGoogle ScholarPubMed
Merikangas, K. R., Mehta, R. L., Molnar, B. E., Walters, E. E., Swendsen, J. D., Aguilar-Gaziola, S., Bijl, R., Borges, G., Caraveo-Anduaga, J. J., DeWit, D. J., Kolody, B., Vega, W. A., Wittchen, H. U. & Kessler, R. C. (1998). Comorbidity of substance use disorders with mood and anxiety disorders: results of the International Consortium in Psychiatric Epidemiology. Addictive Behaviors 23, 893907.CrossRefGoogle Scholar
Morgenstern, J., Langenbucher, J. W. & Labouvie, E. W. (1994). The generalisability of the dependence syndrome across substances: an examination of some properties of the proposed DSM-IV dependence criteria. Addiction 89, 10051113.CrossRefGoogle ScholarPubMed
Muthen, B. O. (1985). A method for studying the homogeneity of test items with respect to other relevant variables. Journal of Educational Statistics 10, 121132.CrossRefGoogle Scholar
Muthen, B. O. & Lehman, J. (1985). Multiple group IRT modeling: application to item bias analysis. Journal of Education Studies 10, 133142.Google Scholar
Muthen, L. K. & Muthen, B. (2006). MPlus: the comprehensive Modeling Program for Applied Researchers, Version 4.Google Scholar
Neale, M. C., Harvey, E., Maes, H. H., Sullivan, P. F. & Kendler, K. S. (2006) Extensions to the modeling of initiation and progression: applications to substance use and abuse. Behavior Genetics 36, 507524.CrossRefGoogle Scholar
Nelson, C. B., Rehm, J., Ustun, T. B., Grant, B. & Chatterji, S. (1999). Factor structures for DSM-IV substance disorder criteria endorsed by alcohol, cannabis, cocaine and opiate users: results from the WHO reliability and validity study. Addiction 94, 843855.CrossRefGoogle ScholarPubMed
Pollock, N. & Martin, C. (1999). Diagnostic orphans: adolescents with alcohol symptoms who do not qualify for DSM-IV abuse or dependence diagnoses. American Journal of Psychiatry 156, 897901.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Danish Institute for Educational Research, Copenhagen.Google Scholar
Rasch, G. (1966). An item analysis which takes individual differences into account. Journal of Mathematical and Statistical Psychology 19, 4957.Google Scholar
Regier, D. A., Farmer, M. E., Rae, D. S., Locke, B. Z., Keith, S. J., Judd, L. L. & Goodwin, F. K. (1990). Comorbidity of mental disorders with alcohol and other drug abuse: results from the Epidemiologic Catchment Area (ECA) Study. Journal of the American Medical Association 264, 25112518.CrossRefGoogle ScholarPubMed
Rodriguez-Llhera, M. C., Domingo-Salvany, A., Brugal, M. T., Silva, T. C., Sanchez-Niubo, A., Torrens, M. & ITINERE Investigators (2006). Psychiatric comorbidity in young heroin users. Drug and Alcohol Dependence 84, 4855.CrossRefGoogle Scholar
Saha, T. D., Chou, S. P. & Grant, B. F. (2006). Toward an alcohol use disorder continuum using item response theory: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychological Medicine 36, 931941.CrossRefGoogle ScholarPubMed
Sakai, J. T., Hall, S. K., Mikulich-Gilbertson, S. K. & Crowley, T. J. (2004). Inhalant use, abuse and dependence among adolescent patients: commonly comorbid problems. Journal of the American Academy of Child and Adolescent Psychiatry 43, 10801088.CrossRefGoogle ScholarPubMed
Sarr, M., Bucholz, K. & Phelps, D. (2000). Using cluster analysis of alcohol use disorders to investigate ‘diagnostic orphans’: subjects with alcohol dependence symptoms but no diagnosis. Drug and Alcohol Dependence 60, 295302.CrossRefGoogle ScholarPubMed
Stinson, F. S., Grant, B. F., Dawson, D. A., Ruan, W. J., Huang, B. & Saha, T. (2005). Comorbidity between DSM-IV alcohol and specific drug use disorders in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Drug and Alcohol Dependence 80, 105116.CrossRefGoogle ScholarPubMed
Substance Abuse and Mental Health Services Administration (2004). Results from the 2003 National Survey on Drug Use and Health: National Findings (Office of Applied Studies, NSDUH Series H-25, DHHS Publication No. SMA 04-3964). Rockville, MD.Google Scholar
Swift, W., Hall, W. & Teesson, M. (2001). Characteristics of DSM-IV and ICD-10 cannabis dependence among Australian adults: results from the National Survey of Health and Wellbeing. Drug and Alcohol Dependence 63, 147153.CrossRefGoogle ScholarPubMed
Takane, Y. & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika 52, 393408.CrossRefGoogle Scholar
Teesson, M., Lynskey, M., Manor, B. & Baillie, A. (2002). The structure of cannabis dependence in the community. Drug and Alcohol Dependence 68, 255262.CrossRefGoogle ScholarPubMed
Tyron, R. C. (1939). Cluster Analysis. Edward: Ann Arbor.Google Scholar