Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T12:19:54.052Z Has data issue: false hasContentIssue false

Prospective role for adenosine and adenosinergic systems in psychiatric disorders

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1990

References

Aceto, M. D., Carchman, R. A., Harris, L. S. & Flora, R. E. (1978). Caffeine elicited withdrawal signs in morphine-dependent rhesus monkeys. European Journal of Pharmacology 50, 203207.CrossRefGoogle ScholarPubMed
Ahlijanian, M. K. & Takemori, A. E. (1985). Effects of (−)-N6-(R-phenylisopropyl)-adenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. European Journal of Pharmacology 112, 171179.CrossRefGoogle ScholarPubMed
Ahlijanian, M. K. & Takemori, A. E. (1986 a). The effect of chronic administration of caffeine on morphine-induced analgesia, tolerance and dependence in mice. European Journal of Pharmacology 120, 2532.CrossRefGoogle ScholarPubMed
Ahlijanian, M. K. & Takemori, A. E. (1986 b). Changes in adenosine receptor sensitivity in morphine-tolerant and -dependent mice. Journal of Pharmacology and Experimental Therapeutics 236, 615620.Google ScholarPubMed
Alkana, R. L., Parker, E. S., Cohen, E. B., Birch, H. & Noble, E. P. (1977). Reversal of ethanol intoxication in humans, an assessment of the efficacy of 1-dopa, aminophylline and ephedrine. Psychopharmacology 55, 203221.CrossRefGoogle Scholar
Baldwin, H. A. & File, S. E. (1989). Caffeine-induced anxiogenesis: the role of adenosine, benzodiazepine and noradrenergic receptors. Pharmacology, Biochemistry and Behavior 32, 181186.CrossRefGoogle ScholarPubMed
Ballenger, J. C. (1988). The use of anticonvulsants in manic-depressive illness. Journal of Clinical Psychiatry 49, 2125.Google ScholarPubMed
Ballenger, J. C. & Post, R. M. (1980). Carbamazepine (Tegretol) in manic-depressive illness: a new treatment. American Journal of Psychiatry 137, 782790.Google ScholarPubMed
Barraco, R. A. & Bryant, S. (1987). Depression of locomotor activity following bilateral injections of adenosine analogs into the striatum of mice. Medical Science Research 15, 421422.Google Scholar
Barraco, R. A., Aggarwal, A. K., Phillis, J. W., Moron, M. A. & Wu, P. H. (1984). Dissociation of the locomotor and hypotensive effects of adenosine analogues in the rat. Neuroscience Letters 48, 139144.CrossRefGoogle ScholarPubMed
Barraco, R. A., Phillis, J. W., Campbell, W. R., Marcantonio, D. R. & Salah, R. S. (1986). The effects of central injections of adenosine analogs on blood pressure and heart rate in the rat. Neuropharmacology 25, 675680.CrossRefGoogle ScholarPubMed
Baumeister, A. A. & Frye, G. D. (1985). The biochemical basis of the behavioral disorder in the Lesch-Nyhan syndrome. Neuroscience and Biobehavioral Reviews 9, 169178.CrossRefGoogle ScholarPubMed
Belardinelli, L., West, A., Crampton, R. & Berne, R. M. (1983). Chronotropic and dromotropic effects of adenosine. In Regulatory Function of Adenosine (ed. Berne, R. M., Rall, T. W. and Rubio, R.), pp. 377398. Martinus Nijhoff: The Hague.CrossRefGoogle Scholar
Berne, R. M., Rafael, R. & Cornish, R. R. (1974). Release of adenosine from ischemic brain. Circulation Research 35, 262271.CrossRefGoogle Scholar
Berne, R. M., Winn, R., Knabb, R. M., Ely, S. W. & Rubio, R. (1983). Blood flow regulation by adenosine in heart, brain and skeletal muscle. In Regulatory Function of Adenosine (ed. Berne, R. M., Rall, T. W. and Rubio, R.), pp. 293317. Martinus Nijhoff: The Hague.CrossRefGoogle Scholar
Botte, L. & Charles, G. (1988). The clinical use of carbamazepine. Review of literature and personal results. Acta Psychiatrica Belgica 88, 181194.Google ScholarPubMed
Boulenger, J-P., & Uhde, T. W. (1982). Caffeine consumption and anxiety: preliminary results of a survey comparing patients with anxiety disorder and normal controls. Psychopharmacology Bulletin 18, 5357.Google ScholarPubMed
Boulenger, J.-P., Patel, J., Post, R. M., Parma, A. & Marangos, P. J. (1983). Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sciences 32, 11351142.CrossRefGoogle ScholarPubMed
Boulenger, J-P., Uhde, T. W., Wolff, E. A. & Post, R. M. (1984). Increased sensitivity to caffeine in patients with panic disorder: preliminary evidence. Archives of General Psychiatry 41, 10671071.CrossRefGoogle ScholarPubMed
Boulenger, J-P., Marangos, P. J., Zander, K. J. & Hanson, J. (1986). Stress and caffeine: effects on central adenosine receptors. Clinical Neuropharmacology 9, 7983.CrossRefGoogle ScholarPubMed
Boulenger, J-P., Salem, N., Marangos, P. J. & Uhde, T. W. (1987). Plasma adenosine levels: measurement in humans and relationship to the anxiogenic effects of caffeine. Psychiatry Research 21, 247255.CrossRefGoogle Scholar
Brailowsky, S., Guerrero-Munoz, F., Lujan, M., & Shkurovich, M. (1981). Morphine-theophylline interaction: antagonism or facilitation? British Journal of Pharmacology 73, 887892.CrossRefGoogle ScholarPubMed
Breese, B. R., Baumeister, A. A., McGown, T. J., Emerick, S. G., Frye, G. D. & Mueller, R. A. (1984). Neonatal-6-hydroxydopamine treatment: model of susceptibility for self mutilation in the Lesch-Nyhan syndrome. Pharmacology, Biochemistry and Behavior 21, 459461.CrossRefGoogle ScholarPubMed
Brezinova, V., Oswald, I. & Loudon, J. (1975). Two types of insomnia: too much waking and not enough sleep. British Journal of Psychiatry 126, 439445.CrossRefGoogle Scholar
Bridges, A. J., Moos, W. H., Szotek, D. L., Trivedi, B. K., Bristol, J. A., Heffner, T. G., Bruns, R. F. & Downs, D. A. (1987). N6-(2, 2-diphenylethyl) adenosine, a novel adenosine receptor agonist with antipsychotic-like activity. Journal of Medical Chemistry 30, 17091711.CrossRefGoogle ScholarPubMed
Bruce, M. S. & Lader, M. (1989). Caffeine abstention in the management of anxiety disorders. Psychological Medicine 19, 211214.CrossRefGoogle ScholarPubMed
Bruns, R. F. (1980). Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Canadian Journal of Physiology and Pharmacology 58, 673691.CrossRefGoogle ScholarPubMed
Bruns, R. F., Daly, J. W. & Synder, S. H. (1980). Adenosine receptors in brain membranes: binding of 3H-N6-cyclohexyladenosine and 3H-1, 3-diethyl-8-phenylxanthine. Proceedings of the National Academy of Sciences USA 77, 55415551.CrossRefGoogle Scholar
Bruns, R. F., Lu, G. H. & Pugsley, T. A. (1986). Characteristics of the A2 adenosine receptor labelled by 3H-NECA in rat striatal membranes. Molecular Pharmacology 29, 331346.Google Scholar
Charney, D. S., Galloway, M. P. & Heninger, G. R. (1984). The effects of caffeine on plasma MHPG, subjective anxiety, autonomic symptoms and blood pressure in healthy humans. Life Sciences 35, 135144.CrossRefGoogle ScholarPubMed
Charney, D. S., Heninger, G. R. & Jatlow, P. I. (1985). Increased anxiogenic effects of caffeine in panic disorders. Archives of General Psychiatry 42, 233243.CrossRefGoogle ScholarPubMed
Clanachan, A. S. & Hammond, J. R. (1983). Drug interactions with the CNS nucleoside transport system. British Journal of Pharmacology 80, 625P.Google Scholar
Clanachan, A. S., Johns, A. & Paton, D. M. (1977). Presynaptic inhibitory actions of adenine nucleotides and adenosine on neurotransmission in the rat vas deferens. Neuroscience 2, 597602.CrossRefGoogle ScholarPubMed
Clark, M. & Dar, M. S. (1988 a). The effects of various methods of sacrifice and of ethanol on adenosine levels in selected areas of rat brain. Journal of Neuroscience Methods 25, 243249.CrossRefGoogle ScholarPubMed
Clark, M. & Dar, M. S. (1988 b). Mediation of acute ethanol-induced motor disturbances by cerebellar adenosine in rats. Pharmacology, Biochemistry and Behaviour 30, 155161.CrossRefGoogle ScholarPubMed
Clark, M. & Post, R. M. (1989). Carbamazepine, but not caffeine, is highly selective for adenosine A, binding sites. European Journal of Pharmacology 164, 399401.CrossRefGoogle ScholarPubMed
Cobb, S. (1974). Physiologic changes in men whose jobs were abolished. Journal of Psychosomatic Research 18, 245258.CrossRefGoogle ScholarPubMed
Conners, C. K. (1979). The acute effects of caffeine on evoked responses, vigilance, and activity level of hyperkinetic children. Journal of Abnormal Child Psychology 7, 145151.CrossRefGoogle ScholarPubMed
Criswell, H., Mueller, R. A. & Breese, G. R. (1988). Assessment of purine-dopamine interactions in 6-hydroxydopamine-lesioned rats: evidence for pre- and postsynaptic influence by adenosine. Journal of Pharmacology and Experimental Therapeutics 244, 493500.Google ScholarPubMed
Dar, M. S. (1988). The biphasic effects of centrally and peripherally administered caffeine on ethanol-induced motor incoordination in mice. Journal of Pharmacy and Pharmacology 40, 482487.CrossRefGoogle ScholarPubMed
Dar, M. S. & Wooles, W. R. (1988). Effect of chronically administered methylxanthines on ethanol-induced motor incoordination in mice. Life Sciences 39, 14291437.Google Scholar
Dar, M. S., Mustafa, S. J. & Wooles, W. R. (1983). Possible role of adenosine in the CNS effects of ethanol. Life Sciences 33, 13631374.CrossRefGoogle ScholarPubMed
Dar, M. S., Jones, M., Close, G., Mustafa, S. J. & Wooles, W. R. (1987). Behavioural interactions of ethanol and methylxanthines. Psychopharmacology 91, 14.CrossRefGoogle ScholarPubMed
Daval, J. L., Deckert, J., Weiss, S. R., Post, R. M. & Marangos, P. J. (1989). Up-regulation of adenosine A1 receptors and forskolin binding sites following chronic treatment with carbamazepine: a quantitive autoradiographic study. Epilepsia 30, 2633.CrossRefGoogle Scholar
Deckert, J. & Gleiter, C. H. (1989). Adenosinergic psycho-pharmaceuticals? Trends in Pharmacological Sciences 10, 99100.CrossRefGoogle Scholar
Deckert, J., Morgan, P. F. & Marangos, P. J. (1988). Adenosine uptake site heterogeneity in mammalian CNS? Uptake inhibitors as probes and potential neuropharmaceuticals. Life Sciences 42, 13311345.CrossRefGoogle ScholarPubMed
Dews, P. B. (1982). Caffeine. Annual Review of Nutrition 2, 323341.CrossRefGoogle ScholarPubMed
Dodd, P. R., Watson, W. E. & Johnston, G. A. (1986). Adenosine receptors in post-mortem human cerebral cortex and the effect of carbamazepine. Clinical and Experimental Pharmacology and Physiology 13, 711722.CrossRefGoogle ScholarPubMed
Dragunow, M. & Faull, R. L. M. (1988). Neuroprotective effects of adenosine. Trends in Pharmacological Sciences 9, 193194.CrossRefGoogle ScholarPubMed
Dragunow, M., Goddard, G. V. & Laverty, R. (1985). Is adenosine an endogenous anticonvulsant? Epilepsia 26, 480487.CrossRefGoogle ScholarPubMed
Drukarch, B., Kits, K. S., Van der Meer, E. G., Lodder, J. C. & Stoof, J. C. (1987). 9-amino-1, 2, 3, 4-tetrahydroacride (THA), an alleged drug for treatment of Alzheimer's disease, inhibits acetylcholinesterase activity and slow outward K+ current. European Journal of Pharmacology 141, 153157.CrossRefGoogle ScholarPubMed
Drukarch, B., Leysen, J. E. & Stoof, J. C. (1988). Further analysis of the neuropharmacological profile of 9-amino-1, 2, 3, 4-tetrahydroacride (THA), an alleged drug for treatment of Alzheimer's disease. Life Sciences 42, 10111017.CrossRefGoogle ScholarPubMed
Dunwiddie, T. V. (1985). The physiological role of adenosine in the central nervous system. International Review of Neurobiology 27, 63139.CrossRefGoogle ScholarPubMed
Dunwiddie, T. V. & Worth, T. (1982). Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. Journal of Pharmacology and Experimental Therapeutics 220, 7076.Google ScholarPubMed
Durcan, M. J. & Morgan, P. F. (1989 a). Evidence for adenosine A2 receptor involvement in the hypomobility effects of adenosine analogues in mice. European Journal of Pharmacology 168, 285290.CrossRefGoogle ScholarPubMed
Durcan, M. J. & Morgan, P. F. (1989 b). NECA-induced hypomotility in mice: evidence for a predominantly central site of action. Pharmacology, Biochemistry and Behavior 32, 487490.CrossRefGoogle ScholarPubMed
Ebstein, R. P., Reches, A. & Belmaker, R. H. (1978). Lithium inhibition of the adenosine-induced increase of adenylate cyclase activity. Journal of Pharmacy and Pharmacology 30, 122123.CrossRefGoogle ScholarPubMed
Elkins, R. N., Rapoport, J. L., Zahn, T. P., Buchsbaum, M. S., Weingarter, H., Kopin, I. J., Langer, D. & Johnson, C. (1981). Acute effects of caffeine on normal prepubertal boys. American Journal of Psychiatry 138, 178183.Google ScholarPubMed
File, S. E. & Hyde, J. R. G. (1979). A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilizers and of stimulants. Pharmacology, Biochemistry and Behavior 11, 6569.CrossRefGoogle ScholarPubMed
Forney, R. B. & Hughes, F. W. (1965). Effect of caffeine and alcohol on performance under stress audiofeedback. Quarterly Journal of Studies on Alcohol 26, 206212.CrossRefGoogle ScholarPubMed
Foussard-Blanpin, O. & Barbier, D. (1986). The influence of tea and caffeine on the behavioral effects of haloperidol in mice. Annales Pharmaceutiques Françaises 44, 233241.Google ScholarPubMed
Francis, D. L., Cuthbert, N. J., Dinneen, L. C., Schneider, C. & Collier, H. O. J. (1976). Methylxanthine-accelerated opiate dependence in the rat. In Opiates and Endogenous Peptides (ed. Kosterlitz, H.), pp. 177184. Elsevier: Amsterdam.Google Scholar
Franks, H. M., Hagedorn, H., Hensley, V. R., Hensley, W. J. & Starmer, G. A. (1975). Effect of caffeine on human performance, alone and in combination with ethanol. Journal of Studies on Alcohol 37, 284297.CrossRefGoogle Scholar
Fredholm, B. B. (1976). Release of adenosine-like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic alpha receptor blockade. Acta Physiologica Scandinavica 96, 422430.CrossRefGoogle ScholarPubMed
Fredholm, B. B. & Dunwiddie, T. V. (1988). qHow does adenosine inhibit transmitter release? Trends in Pharmacological Sciences 9, 130134.CrossRefGoogle ScholarPubMed
Fredholm, B. B., Jonzon, B. & Lindgren, E. (1984). Changes in noradrenaline release and in beta receptor number in rat hippocampus following long-term treatment with theophylline or L-phenylisopropyladenosine. Acta Physiologica Scandinavica 122, 5559.CrossRefGoogle ScholarPubMed
Fredholm, B. B., Zahniser, N. R., Weiner, G. R., Proctor, W. R. & Dunwiddie, T. V. (1985). Behavioral sensitivity to PIA in selectively bred mice is related to a number of A1 receptors but not to cyclic AMP accumulation in brain slices. European Journal of Pharmacology 111, 133136.CrossRefGoogle Scholar
Freeman, S. E., Lau, W. M. & Szilagyi, M. (1988). Blockade of a cardiac K+ channel by tacrine: interactions with muscarinic and adenosine receptors. European Journal of Pharmacology 154, 5965.CrossRefGoogle ScholarPubMed
Fubin, R. & Nicastro, R. (1988). Can caffeine antagonize alcohol induced performance decrements in humans? Perceptual and Motor Skills 67, 375391.Google Scholar
Fujiwara, Y., Sato, M. & Otsuki, S. (1986). Interaction of carbamazepine and other drugs with adenosine (A1 and A2) receptors. Psychopharmacology 90, 332335.CrossRefGoogle ScholarPubMed
Fuxe, K. & Ungerstedt, U. (1974). Action of caffeine and theophylline on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with dopa and dopamine agonists. Medical Biology 52, 58–54.Google Scholar
Geyer, H. M., Wilker, J., Spaulding, T., Cornfeldt, M., Brugger, S., Huger, F. & Novick, W. (1982). N6-cyclohexyladenosine (CHA): some in vivo pharmacology. Federation Proceedings, American Society for Experimental Biology 41, 1071.Google Scholar
Gilliland, K. & Bullock, W. (1983). Caffeine as a potential drug of abuse. Advances in Alcohol and Substance Abuse 3, 5373.CrossRefGoogle ScholarPubMed
Ginsborg, B. L. & Hirst, G. D. S. (1972). The effect of adenosine on the release of transmitter from the phrenic nerve of the rat. Journal of Physiology (London) 224, 629645.CrossRefGoogle ScholarPubMed
Ginsburg, R. & Weintraub, M. (1976). Caffeine in the ‘Sundown Syndrome’. Journal of Gerontology 31, 419420.CrossRefGoogle ScholarPubMed
Gleiter, C. H., Deckert, J. & Nutt, D. J. (1988). Changes in caffeine seizure threshold after electroconvulsive shock. Psychopharmacology 95, 544545.CrossRefGoogle ScholarPubMed
Gleiter, C. H., Deckert, J., Nutt, D. J. & Marangos, P. J. (1989). Electroconvulsive shock (ECS) and the adenosine neuromodulatory system: effect of single and repeated ECS on the adenosine A1, and A2 receptors, adenylate cyclase, and the adenosine uptake site. Journal of Neurochemistry 52, 641646.CrossRefGoogle ScholarPubMed
Goldstein, A. & Kaizer, S. (1969). Psychotropic effects of caffeine in man. III. A questionnaire survey of coffee drinking and its effects in a group of housewives. Clinical Pharmacology and Therapeutics 10, 489497.CrossRefGoogle Scholar
Gould, R. J., Murphey, K. M. M., Katims, J. J. & Snyder, S. H. (1984). Caffeine actions and adenosine. Psychopharmacology Bulletin 20, 436440.Google ScholarPubMed
Greden, J. F. (1974). Anxiety or caffeinism: a diagnostic dilemma. American Journal of Psychiatry 131, 10891092.Google ScholarPubMed
Greden, J. F., Fontaine, P., Lubetsky, M. & Chamberlin, K. (1978). Anxiety and depression associated with caffeinism among psychiatric inpatients. American Journal of Psychiatry 135, 963966.Google ScholarPubMed
Hamprecht, B. & van Calker, D. (1985). Nomenclature of adenosine receptors. Trends in Pharmacological Sciences 6, 153154.CrossRefGoogle Scholar
Hamburger-Bar, R., Robert, M., Newman, M. & Belmaker, R. H. (1986). Interstrain correlation between behavioral effects of lithium and effects on cortical cyclic AMP. Pharmacology, Biochemistry and Behavior 24, 913.CrossRefGoogle ScholarPubMed
Hammond, M. D., Scheider, C. & Collier, H. O. J. (1976). Induction of opiate tolerance in isolated guinea-pig ileum and its modification by drugs. In Opiates and Endogenous Peptides (ed. Kosterlitz, H.), pp. 169176. Elsevier: Amsterdam.Google Scholar
Hansen, O. (1972). Blood nucleoside and nucleotide studies in mental diseases. British Journal of Psychiatry 121, 341350.CrossRefGoogle Scholar
Harms, H. H., Wardeh, G. & Mulder, A. H. (1978). Adenosine modulates depolarization-induced release of 3H-noradrenaline from slices of rat brain neocortex. European Journal of Pharmacology 49, 305308.CrossRefGoogle ScholarPubMed
Harms, H. H., Wardeh, G. & Mulder, A. H. (1979). Effect of adenosine depolarization-induced release of various radio-labelled neurotransmitters from slices of rat corpus striatum. Neuropharmacology 18, 577580.CrossRefGoogle Scholar
Harvey, D. H. & Marsh, R. W. (1978). The effects of de-caffeinated coffee versus whole coffee on hyperactive children. Developmental Medicine and Child Neurology 20, 8186.CrossRefGoogle ScholarPubMed
Hawkins, M., Dugich, M. M., Porter, N. M., Urbancic, M. & Radulovacki, M. (1988 a). Effects of chronic administration of caffeine on adenosine A1 and A2 receptors in rat brain. Brain Research Bulletin 21, 479482.CrossRefGoogle ScholarPubMed
Hawkins, M., Pan, W., Stefanovich, P. & Radulovacki, M. (1988 b). Desensitization of adenosine A2 receptors in the striatum of the rat following chronic treatment with diazepam. Neuropharmacology 27, 11311140.CrossRefGoogle ScholarPubMed
Hawkins, M., Pravica, M. & Radulovacki, M. (1988 c). Chronic administration of diazepam downregulates adenosine receptors in rat brain. Pharmacology, Biochemistry and Behavior 30, 303308.CrossRefGoogle ScholarPubMed
Heffner, T. G., Downs, D. A., Bristol, J. A., Bruns, R. F., Harrian, S. E., Moos, W. H., Sledge, K. L. & Wiley, J. N. (1985). Antipsychotic-like effects of adenosine receptor agonists. Pharmacologist 27, 293.Google Scholar
Hilakivi, L. A., Durcan, M. J. & Lister, R. G. (1989). Effects of caffeine on social behavior, exploration and locomotor activity: interactions with ethanol. Life Sciences 44, 543553.CrossRefGoogle ScholarPubMed
Ho, I. K., Loh, H. H. & Leong Way, E. (1973). Cyclic adenosine monophosphate antagonism of morphine analgesia. Journal of Pharmacology and Experimental Therapeutics 185, 336346.Google ScholarPubMed
Ho, I. K., Loh, K. K., Bhargava, H. N. & Way, E. L. (1975). Effect of cyclic nucleotides and phosphodiesterase inhibition on morphine tolerance and physical dependence. Life Sciences 16, 18951900.CrossRefGoogle ScholarPubMed
Hollins, C. & Stone, T. W. (1980). Adenosine inhibition of gamma aminobutyric acid from slices of rat cerebral cortex. British Journal of Pharmacology 69, 107112.CrossRefGoogle ScholarPubMed
Hood, T. W., Siegfried, J. & Hass, H. L. (1983). Analysis of carbamazepine actions in hippocampal slices of the rat. Cellular and Molecular Neurobiology 3, 213222.CrossRefGoogle ScholarPubMed
Hoppenbrouwers, M.-L. & Vanden Bussche, G. (1989). Mioflazine, a nucleoside inhibitor: is it effective as a sleep promotor in humans? In Slow Wave Sleep: Physiological, Pathophysiological and Functional Aspects (ed. Wauquier, A., Dugovic, C. and Radulovacki, M.), pp. 301309. Raven Press: New York.Google Scholar
Jankovic, J., Caskey, T. C., Stout, J. T. & Butler, I. J. (1988). Lesch-Nyhan syndrome: a study of motor behavior and cerebrospinal fluid neurotransmitters. Annals of Neurology 23, 466469.CrossRefGoogle ScholarPubMed
Karacan, I., Thornby, J. I., Anch, M., Booth, G. H., Williams, R. L. & Salis, P. J. (1976). Dose-related sleep disturbances induced by coffee and caffeine. Clinical Pharmacology and Therapeutics 20, 682689.CrossRefGoogle ScholarPubMed
Lane, J. D. (1983). Caffeine and cardiovascular responses to stress. Psychosomatic Medicine 45, 447451.CrossRefGoogle ScholarPubMed
Lesch, M. & Nyhan, W. L. (1964). A familial disorder of uric acid metabolism and the central nervous system. American Journal of Medicine 36, 561570.CrossRefGoogle Scholar
Lieberman, H. R., Wurtmam, R. J., Emde, G. G.Roberts, C. & Coviella, I. L. (1987). The effects of low doses of caffeine on human performance and mood. Psychopharmacology 92, 308312.CrossRefGoogle ScholarPubMed
Linnoila, M. & Mattila, M. J. (1981). How to antagonize ethanol-induced inebriation. Pharmacology and Therapeutics 15, 99109.CrossRefGoogle ScholarPubMed
Lister, R. G. (1987). The use of the plus-maze to measure anxiety in the mouse. Psychopharmacology 92, 180185.CrossRefGoogle ScholarPubMed
Lloyd, H.G. E. & Stone, T. W. (1981). Chronic methylxanthine treatment in rats; a comparison of Wistar and Fisher 344 strains. Pharmacology, Biochemistry and Behavior 14, 827830.CrossRefGoogle Scholar
Loke, W. H., Hinrichs, J. V. & Ghonheim, M. M. (1985). Caffeine and diazepam: separate and combined effects on mood, memory and psychomotor performance. Psychopharmacology 87, 344350.CrossRefGoogle ScholarPubMed
Londos, C., Wolff, J. & Cooper, D. M. F. (1979). Action of adenosine on adenylate cyclase. In Physiological and Regulatory Functions of Adenosine and Adenosine Nucleotides (ed. Baer, H. P. and Drummond, G. I.), pp. 271281. Raven Press: New York.Google Scholar
Lutz, E. G. (1978). Restless legs, anxiety and caffeinism. Journal of Clinical Psychiatry 39, 691698.Google ScholarPubMed
Marangos, P. J., Boulenger, J.-P. & Patel, J. (1984). Effects of chronic caffeine on brain adenosine receptors: regional and ontogenetic studies. Life Sciences 34, 899907.CrossRefGoogle ScholarPubMed
Marangos, P. J., Insel, T. R., Montgomery, P. & Tamborska, E. (1987 a). Brain adenosine receptors in Maudsley Reactive and Non-Reactive rats. Brain Research 421, 6974.CrossRefGoogle ScholarPubMed
Marangos, P. J., Montgomery, P., Weiss, S. R., Patel, J. & Post, R. M. (1987 b). Persistent up-regulation of brain adenosine receptors in response to chronic carbamazepine treatment. Clinical Neuropharmacology 10, 443448.CrossRefGoogle Scholar
Marangos, P. J., Patel, J., Smith, K. D. & Post, R. M. (1987 c). Adenosine antagonist properties of carbamazepine. Epilepsia 28, 387394.CrossRefGoogle ScholarPubMed
Matsuda, K. (1970). Experimental studies on the effective procedure to inhibit the development of tolerance to and dependence on morphine. Arzniemittel-Forschung (Drug Research) 20, 15961604.Google ScholarPubMed
Michaelis, M. L., Michaelis, E. K. & Myers, S. L. (1979). Adenosine modulation of synaptosomal dopamine release. Life Sciences 24, 20832092.CrossRefGoogle ScholarPubMed
Mikkelsen, E. J. (1978). Caffeine and schizophrenia. Journal of Clinical Psychiatry 39, 732736.Google ScholarPubMed
Morgan, P. F. & Stone, T. W. (1986). Inhibition by benzodiazepines and beta-carbolines of brief (5 seconds) synaptosomal accumulation of [3H]-adenosine. Biochemical Pharmacology 10, 17601762.CrossRefGoogle Scholar
Morgan, P. F., Lloyd, H. G. E. & Stone, T. W. (1983 a). Benzodiazepine inhibition of adenosine uptake is not prevented by benzodiazepine antagonists. European Journal of Pharmacology 87, 121126.CrossRefGoogle Scholar
Morgan, P. F., Lloyd, H. G. E. & Stone, T. W. (1983 b). Inhibition of adenosine accumulation by a CNS benzodiazepine antagonist (RO 15–1788) and a peripheral benzodiazepine receptor ligand (RO 05–4864). Neuroscience Letters 41, 183188.CrossRefGoogle Scholar
Morgan, P. F., Deckert, J., Jacobson, K. A., Marangos, P. J. & Daly, J. W. (1989). Potent convulsant actions of the adenosine receptor antagonist, xanthine amine congener (XAC). Life Sciences 45, 719728.CrossRefGoogle ScholarPubMed
Murray, J. B. (1988). Psychophysiological aspects of caffeine consumption. Psychological Reports 62, 575587.CrossRefGoogle ScholarPubMed
Myers, S. & Pugsley, T. A. (1986). Decrease in striatal dopamine synthesis and metabolism in vivo by metabolically stable adenosine receptor agonists. Brain Research 375, 193197.CrossRefGoogle ScholarPubMed
Nash, H. (1966). Psychological effects & alcohol-antagonizing properties of caffeine. Quarterly Journal of Studies on Alcohol 27, 727734.CrossRefGoogle Scholar
Newman, H. W. & Newman, E. J. (1956). Failure of dexedrine and caffeine as practical antagonists of the depressant effect of ethyl alcohol in man. Quarterly Journal of Studies on Alcohol 17, 406410.CrossRefGoogle ScholarPubMed
Newman, M., Zohar, J., Kalian, M. & Belmaker, R. H. (1984). The effects of chronic lithium and ECT on A1 and A2 adenosine systems in rat brain. Brain Research 291, 188192.CrossRefGoogle ScholarPubMed
Nilsson, L., Adem, A., Hardy, J., Winland, B. & Norberg, A. (1987). Do tetrahydroaminoacride and physostigmine restore acetylcholine release in Alzheimer brains via nicotinic receptors? Journal of Neural Transmission 70, 357368.CrossRefGoogle ScholarPubMed
Oborne, D. J. & Rodgers, Y. (1983). Interactions of alcohol and caffeine on human reaction time. Aviation. Space and Environmental Medicine 54, 528534.Google ScholarPubMed
Paterson, A. R. P., Kolassa, N. & Cass, L. E. (1981). Transport of nucleoside drugs in animal cells. Pharmacology and Therapeutics 12, 515536.CrossRefGoogle ScholarPubMed
Paterson, A. R. P., Jakobs, E. S., Harley, E. R., Fu, N.-W., Robins, M. J. & Cass, C. E. (1983). Inhibition of nucleoside transport. In Regulatory Function of Adenosine (ed. Berne, R. M., Rail, T. W. and Rubio, R.), pp. 293313. Martinus Nijhoff: The Hague.Google Scholar
Pellow, S., Chopin, P., File, S. E. & Briley, M. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods 14, 149167.CrossRefGoogle Scholar
Perkins, M. N. & Stone, T. W. (1980). Blockade of striatal neurone responses to morphine by aminophylline: evidence for adenosine mediation of opiate action. British Journal of Pharmacology 69, 131137.CrossRefGoogle ScholarPubMed
Peters, J. M. (1967). Caffeine-induced hemorrhagic automutillation. Archives internationales de pharmacodynamie et de therapyé 169, 139146.Google Scholar
Phillis, J. W. (1979). Diazepam potentiation of purinergic depression of central neurons. Canadian Journal of Physiology and Pharmacology 57, 432435.CrossRefGoogle ScholarPubMed
Phillis, J. W. (1984 a). Adenosine's role in the central actions of benzodiazepines. Progress in Neuro-Psychopharmacology and Biological Psychiatry 8, 495502.CrossRefGoogle ScholarPubMed
Phillis, J. W. (1984 b). Interactions of the anticonvulants diphenylhydantoin and carbamazepine with adenosine on cerebral cortical neurons. Epilepsia 25, 765772.CrossRefGoogle Scholar
Phillis, J. W. & O'Regan, M. H. (1987). Antagonism of adenosinergic depression of rat cortical neurones by beta-carboline derivatives. Medical Science Research 15, 13391340.Google Scholar
Phillis, J. W. & O'Regan, M. H. (1988). The role of adenosine in the central actions of the benzodiazepines. Progress in Neuropsycho-pharmacology and Biological Psychiatry 12, 389404.CrossRefGoogle ScholarPubMed
Phillis, J. W. & Wu, P. H. (1981 a). The role of adenosine and its nucleotides in central synaptic transmission. Progress in Neurobiology 16, 187239.CrossRefGoogle ScholarPubMed
Phillis, J. W. & Wu, P. H. (1981 b). The role of adenosine and its nucleotides in the central nervous system. In Physiology and Pharmacology of Adenosine Derivatives (ed. Daly, J., Kuruda, J., Phillis, J. and Ui, M.), pp. 219236. Raven Press: New York.Google Scholar
Phillis, J. W. & Wu, P. H. (1982). Adenosine and benzodiazepine action. In The Pharmacology of Benzodiazepines (ed. Usdin, E., Skolnick, P., Tallman, J. F., Greenblatt, D. and Paul, S. M.), pp.497507. Macmillan: London.Google Scholar
Phillis, J. W., Edstrom, J. P., Kostopoulos, A. K. & Kirkpatrick, J. R. (1979 a). Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Canadian Journal of Physiology and Pharmacology 57, 12891310.CrossRefGoogle ScholarPubMed
Phillis, J. W., Edstrom, J. P., Ellis, S. W. & Kirkpatrick, J. R. (1979 b). Theophylline antagonizes flurazepam-induced depression of cerebral cortical neurones. Canadian Journal of Physiology and Pharmacology 57, 917920.CrossRefGoogle Scholar
Phillis, J. W., Bender, A. S. & Wu, P. H. (1980 a). Benzodiazepines inhibit adenosine uptake in rat brain synaptosomes. Brain Research 195, 494498.CrossRefGoogle ScholarPubMed
Phillis, J. W., Jiang, Z. G. & Chelack, B. J. (1980 b). Effects of ethanol on acetylcholine and adenosine efflux from in vivo rat cerebral cortex. Journal of Pharmacy and Pharmacology 32, 871872.CrossRefGoogle ScholarPubMed
Phillis, J. W., Barraco, R. A., DeLong, R. E. & Washington, D. O. (1986). Behavioral characteristics of centrally administered adenosine analogs. Pharmacology, Biochemistry and Behavior 24, 263270.CrossRefGoogle ScholarPubMed
Pons, L., Trenque, T., Bielecki, M., Moulin, M., & Potier, J. C. (1988). Attentional effects of caffeine in man: comparison with drugs acting upon performance. Psychiatry Research 23, 329333.CrossRefGoogle ScholarPubMed
Porter, N. M., Radulovacki, M. & Green, R. D. (1988). Desensitization of adenosine and dopamine receptors in rat brain after treatment with adenosine analogs. Journal of Pharmacology and Experimental Therapeutics 244, 218225.Google ScholarPubMed
Post, R. M. (1989). Emerging perspectives on valproate in affective disorders. Journal of Clinical Psychiatry 50 (suppl), 39.Google ScholarPubMed
Post, R. M., Ballenger, J. C., Uhde, T. W. & Bunney, W. E. Jr. (1984). Efficacy of carbamazepine in manic-depressive illness: implications for underlying mechanisms. In Neurobiology of Mood Disorders (ed. Post, R. M. and Ballenger, J. C.), pp. 777816. Williams & Wilkins: Baltimore.Google Scholar
Premont, J., Perez, M., Blanc, G., Tassin, J.-P., Thierry, A. M., Herve, D. & Bockaert, J. (1979). Adenosine sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular and cellular distribution. Molecular Pharmacology 16, 790804.Google ScholarPubMed
Proctor, W. R. & Dunwiddie, T. V. (1984). Behavioral sensitivity to purinergic drugs parallels ethanol sensitivity in selectively bred mice. Science 224, 519521.CrossRefGoogle ScholarPubMed
Proctor, W. R., Baker, R. C. & Dunwiddie, T. V. (1985). Differential CNS sensitivity to PIA and theophylline in long-sleep and short-sleep mice. Alcohol 2, 387391.CrossRefGoogle ScholarPubMed
Radulovacki, M. (1985). Role of adenosine in sleep in rats. Reviews in Clinical and Basic Pharmacology 5, 327339.Google ScholarPubMed
Radulovacki, M., Miletich, R. S. & Green, R. D. (1982). N6 (L-phenylisopropyl) adenosine (L-PIA) increases slow-wave sleep (S2) and decreases wakefulness in rats. Brain Research 246, 178180.CrossRefGoogle Scholar
Radulovacki, M., Virus, R. M., Djuricic-Nedelson, M. & Green, R. D. (1983). Hypnotic effects of deoxycoformycin in rats. Brain Research 271, 392395.CrossRefGoogle ScholarPubMed
Radulovacki, M., Virus, R. M., Djuricic-Nedelson, M. & Green, R. D. (1984). Adenosine analogs and sleep in rats. Journal of Pharmacology and Experimental Therapeutics 228, 268274.Google ScholarPubMed
Rapoport, J. L., Elkins, R., Neims, A., Zahn, T. & Berg, C. T. (1981). Behavioral and autonomic effects of caffeine in normal boys. Developmental Pharmacology and Therapeutics 3, 7482.CrossRefGoogle ScholarPubMed
Reichard, C. C. & Elder, S. T. (1977). The effects of caffeine on reaction time in hyperkinetic and normal children. American Journal of Psychiatry 134, 144148.Google ScholarPubMed
Reiner, P. B. & McGeer, E. G. (1988). THA increases action potential duration of central histamine neurons in vitro. European Journal of Pharmacology 155, 265270.CrossRefGoogle ScholarPubMed
Revelle, W., Humphreys, M. S., Simon, L. & Gilliland, K. (1980). The interactive effect of personality, time of day and caffeine: a test of the arousal model. Journal of Experimental Psychology: General 109, 131.CrossRefGoogle ScholarPubMed
Ribeiro, J. A. & Sebastiano, A. M. (1986). Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Progress in Neurobiology 26, 179209.CrossRefGoogle ScholarPubMed
Richie, J. M. (1975). Central nervous system stimulants: II. The methylxanthines. In The Pharmacological Basis of Therapeutics (ed. Goodman, L. S. and Gilman, A.), pp. 367378. Macmillan: New York.Google Scholar
Robertson, H. A., Martin, I. L. & Candy, J. M. (1978). Differences in benzodiazepine receptor binding in Maudsley Reactive and Maudsley Non-Reactive rats. European Journal of Pharmacology 50, 455457.CrossRefGoogle ScholarPubMed
Roy-Byrne, P. P. & Uhde, T. W. (1988). Exogenous factors in panic disorder: clinical and research implications. Journal of Clinical Psychiatry 49, 5661.Google ScholarPubMed
Sakata, T. & Fuchimoto, H. (1973). Stereotyped and aggressive behavior induced by sustained high dose of theophylline in rats. Japanese Journal of Pharmacology 23, 781785.CrossRefGoogle ScholarPubMed
Sarda, N., Gharib, A. & Pacheco, H. (1989). S-adenosyl-L-homocysteine, adenosine and L-homocysteine on sleep. In Slow Wave Sleep: Physiological, Pathophysiological and Functional Aspects (ed. Wauquier, A., Dugovic, C. and Radulovacki, M.), pp. 267271. Raven Press: New York.Google Scholar
Sattin, A. (1981 a). Adenosine as a mediator of antidepressant treatment. In Chemisms of the Brain (ed. Rodnight, R., Bachelhard, H., and Stahl, W. L.), pp. 265275. Churchill Livingstone: Edinburgh.Google Scholar
Sattin, A. (1981 b). Adenosine as a mediator of central nervous system effects during psychiatric treatment. In Neuropharmacology of Central Nervous System and Behavioral Disorders (ed. Palmer, G. C.), pp. 645655. Academic Press: New York.Google Scholar
Sattin, A., Stone, T. W. & Taylor, D. A. (1978). Biochemical and electropharmacological studies with tricyclic antidepressants in rat and guinea-pig cerebral cortex. Life Sciences 23, 26212626.CrossRefGoogle Scholar
Skerritt, J. H., Davies, L. P. & Johnston, G. A. R. (1982). A purinergic component in the anticonvulsant action of carbamazepine? European Journal of Pharmacology 82, 195197.CrossRefGoogle Scholar
Skerritt, J. H., Davies, L. P. & Johnston, G. A. R. (1983). Interactions of the anticonvulsant carbamazepine with adenosine receptors. 1. Neurochemical studies. Epilepsia 24, 634642.CrossRefGoogle ScholarPubMed
Spealman, R. D. & Coffin, V. L. (1986). Behavioral effects of adenosine analogs in squirrel monkeys: relation to adenosine A2 receptors. Psychopharmacology 90, 419421.CrossRefGoogle ScholarPubMed
Stewart, S. F. & Pugsley, T. A. (1985). Increase of rat serum prolactin by adenosine analogs and their blockade by the methylxanthine aminophylline Naunyn-Schmiedeberg's Archives of Pharmacology 331, 140145.CrossRefGoogle ScholarPubMed
Stone, T. W. (1981). Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system. Neuroscience 6, 523555.CrossRefGoogle ScholarPubMed
Stone, T. W. & Perkins, M. N. (1979). Is adenosine the mediator of opiate action on neuronal firing rates? Nature 281, 227228.CrossRefGoogle Scholar
Stromgren, L. S. & Boller, S. (1985). Carbamazepine in treatment and prophylaxis of manic-depressive disorder. Psychiatric Developments 3, 349367.Google ScholarPubMed
Summers, W. K., Majovski, L. V., Marsh, G. M. & Candelora, K. (1981). Use of THA in treatment of Alzheimer-like dementia; pilot study in twelve patients. Biological Psychiatry 16, 145153.Google Scholar
Summers, W. K., Viesselman, J. O., Marsh, G. M., Tachiki, K. & Kling, A. (1986). Oral tetrahydroaminoacridine in the long-term treatment of senile dementia, Alzheimer type. New England Journal of Medicine 315, 12411245.CrossRefGoogle ScholarPubMed
Swift, C. G. & Tiplady, B. (1988). The effects of age on the response to caffeine. Psychopharmacology 94, 2931.CrossRefGoogle ScholarPubMed
Synder, S. H. & Sklar, P. (1984). Behavioral and molecular actions of caffeine: focus on adenosine. Journal of Psychiatric Research 18, 91106.Google Scholar
Synder, S. H., Katims, J. S., Annau, Z., Bruns, R. F. & Daly, J. W. (1981). Adenosine receptors and the actions of the methylxanthines. Proceedings of the National Academy of Sciences, USA 78, 32603264.CrossRefGoogle Scholar
Tamborska, E., Insel, T. & Marangos, P. J. (1986). Peripheral and central type benzodiazepine receptors in Maudsley rats. European Journal of Pharmacology 126, 281287.CrossRefGoogle ScholarPubMed
Uhde, T. W. (1988). Caffeine: practical facts for the psychiatrist. In Anxiety: New Research Findings for the Clinician (ed. Roy-Byrne, P.), pp. 7398. American Psychiatric Press: Washington. DC.Google Scholar
Uhde, T. W., Boulenger, J.-P., Jimerson, D. C. & Post, R. M. (1984). Caffeine: relationship to human anxiety, plasma MHPG and cortisol. Psychopharmacology Bulletin 20, 426430.Google ScholarPubMed
van Calker, D., Muller, M. & Hamprecht, B. (1979). Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. Journal of Neurochemistry 33, 9991005.CrossRefGoogle ScholarPubMed
Vapaatalo, H., Onken, D., Neuronen, P. J. & Westermann, E. (1975). Stereospecificity in some central circulatory effects of phenylisopropyladenosine PIA. Arzniemittel Forschung (Drug Research) 25, 407410.Google Scholar
Veleber, D. M. & Templer, D. I. (1984). Effects of caffeine on anxiety and depression. Journal of Abnormal Psychology 93, 120122.CrossRefGoogle ScholarPubMed
Virus, R. M., Baglajewski, T. & Radulovacki, M. (1984). Circadian variation of [3H]N6-(L-phenylisopropyl)adenosine binding in rat brain. Neuroscience Letters 46, 219222.CrossRefGoogle ScholarPubMed
Virus, R. M., Djuricic-Nedelson, M., Radulovacki, M. & Green, R. D. (1983). The effects of adenosine and 2′-deoxycoformycin on sleep and wakefulness in rats. Neuropharmacology 22 14011404.CrossRefGoogle ScholarPubMed
Wauquier, A., Van Belle, H., Van den Broeck, W. A. E. & Janssen, P. A. J. (1987). Sleep improvement in dogs after oral administration of mioflazine, a nucleoside transport inhibitor. Psychopharmacology 91, 434439.CrossRefGoogle ScholarPubMed
Weir, R. L., Padgett, W., Daly, J. W. & Anderson, S. M. (1984). Interaction of anticonvulsant drugs with adenosine receptors in the central nervous system. Epilepsia 25, 492498.CrossRefGoogle ScholarPubMed
Weiss, S. R., Post, R. M., Marangos, P. J. & Patel, J. (1985). Adenosine antagonists. Lack of effect on the inhibition of kindled seizures in rats by carbamazepine. Neuropharmacology 24, 635638.CrossRefGoogle ScholarPubMed
Williams, M. & Jarvis, M. F. (1988). Adenosine antagonists as potential therapeutic agents. Pharmacology, Biochemistry and Behavior 29, 433441.CrossRefGoogle ScholarPubMed
Wojcik, W. J. & Neff, N. H. (1983 a). Differential location of adenosine A1 and A2 receptors in striatum. Neuroscience Letters 41, 5560.CrossRefGoogle ScholarPubMed
Wojcik, W. J. & Neff, N. H. (1983 b). Location of adenosine release and adenosine A2 receptors to rat striatal neurons Life Sciences 33, 755763.CrossRefGoogle ScholarPubMed
Yanik, G. M., Glaum, S. & Radulovacki, M. (1987). The dose-response effects of caffeine on sleep in rats. Brain Research 403, 177180.CrossRefGoogle ScholarPubMed
Yanik, G. M. & Radulovacki, M. (1987). REM sleep deprivation upregulates adenosine A1 receptors. Brain Research 402, 362364.CrossRefGoogle ScholarPubMed
Yarbrough, G. G. & McGuffin-Clineschmidt, T. C. (1981). In vivo behavioral assessment of central nervous system purinergic receptors. European Journal of Pharmacology 76, 137144.CrossRefGoogle ScholarPubMed
Yeung, S. M. H. & Green, R. D. (1984). 3[H]5′-N-ethylcarboxamide adenosine binds to both Ra and R1 adenosine receptors in rat striatum. Naunyn-Schmiedeberg's Archives of Pharmacology 325, 218225.CrossRefGoogle Scholar