Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T00:28:12.127Z Has data issue: false hasContentIssue false

Post-mortem neurochemistry of schizophrenia1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1988

References

Bacopoulos, N. G., Bustos, G., Redmond, D. E., Baulu, J. & Roth, R. H. (1978). Regional sensitivity of primate brain dopaminergic neurons to haloperidol: alterations following chronic treatment. Brain Research 157, 396401.CrossRefGoogle ScholarPubMed
Bacopoulos, N. G., Spokes, E. G., Bird, E. D. & Roth, R. H. (1979). Antipsychotic drug action in schizophrenic patients: effects on cortical dopamine metabolism after long-term treatment. Science 205, 14051407.CrossRefGoogle ScholarPubMed
Bennett, J. P., Enna, S. J., Bylund, D. B., Gillin, J. C., Wyatt, R. J. & Snyder, S. H. (1979). Neurotransmitter receptors in frontal cortex of schizophrenics. Archives of General Psychiatry 36, 927934.CrossRefGoogle ScholarPubMed
Bird, E. D., Spokes, E. G. S., Barnes, J., Mackay, A. V. P., Iversen, L. L. & Shepherd, M. (1978). Glutamic acid decarboxylase in schizophrenia. Lancet ii, 156.CrossRefGoogle Scholar
Bissette, G., Nemeroff, C. B. & Mackay, A. V. P. (1986). Peptides in schizophrenia. In Progress in Brain Research, vol. 66 (ed. Emson, P. C., Rossor, M. and Tohyama, M.), pp. 161174. Elsevier: Amsterdam.Google Scholar
Bracha, H. S. (1987). Asymmetric rotational (circling) behavior, a dopamine-related asymmetry: preliminary findings in unmedicated and never-medicated schizophrenic patients. Biological Psychiatry 22, 9951003.CrossRefGoogle ScholarPubMed
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoe, R., Johnstone, E. C. & Marsh, L. (1986). Postmortem evidence of structural brain changes in schizophrenia. Archives of General Psychiatry 43, 3642.CrossRefGoogle ScholarPubMed
Carruthers, R., Dawbarn, D., de Quidt, M., Emson, P. C., Hunter, J. & Reynolds, G. P. (1984). Changes in the neuropeptide content of amygdala in schizophrenia. British Journal of Pharmacology 81, 190P.Google Scholar
Clow, A., Theodorou, A., Jenner, P. & Marsden, C. D. (1980). Changes in rat striatal dopamine turnover and receptor activity during one year's neuroleptic administration. European Journal of Pharmacology 63, 135144.CrossRefGoogle Scholar
Cross, A. J., Crow, T. J. & Owen, F. (1979). Gamma-amino-butyric acid in the brain in schizophrenia. Lancet i, 560561.CrossRefGoogle Scholar
Crow, T. J., Owen, F., Cross, A. J., Ferrier, I. N., Johnstone, E. C., McCreadie, R. G., Owens, D. G. C. & Poulter, M. (1981). Neurotransmitter enzymes and receptors in post-mortem brain in schizophrenia: evidence that an increase in D2 receptors is associated with the type I syndrome. In Transmitter Biochemistry of Human Brain Tissue (ed. Riederer, P. and Usdin, E.), pp. 8596. Macmillan: London.CrossRefGoogle Scholar
Czudek, C. & Reynolds, G. P. (1987). 3H-muscimol binding to postmortem brain tissue in schizophrenia. British Journal of Pharmacology 91, 342P.Google Scholar
Emrich, H. M., Zaudig, M., Kissling, W., Dirlich, G., von Zerssen, D. & Herz, A. (1980). Des-tyrosyl-γ-endorphin in schizophrenia: a double-blind trial in 13 patients. Pharmacopsychiatry 13, 290298.CrossRefGoogle ScholarPubMed
Farley, I. J., Price, K. S., McCullough, E., Deck, J. H. N., Hordynski, W. & Hornykiewicz, O. (1978). Norepinephrine in chronic paranoid schizophrenia: above-normal levels in limbic forebrain. Science 200, 456458.CrossRefGoogle ScholarPubMed
Ferrier, I. N., Roberts, G. W., Crow, T. J., Johnstone, E. C., Owens, D. G. C., Lee, Y. C., O'Shaughnessy, D., Adrian, T. E., Polak, J. M. & Bloom, S. R. (1983). Reduced cholecystokinin-like and somatostatin-like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Sciences 33, 475482.CrossRefGoogle ScholarPubMed
Flor-Henry, P. (1969). Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia 10, 363395.CrossRefGoogle ScholarPubMed
Hess, E. J., Bracha, H. S., Kleinman, J. E. & Creese, I. (1987). Dopamine receptor subtype imbalance in schizophrenia. Life Sciences 40, 14871497.CrossRefGoogle ScholarPubMed
Hornykiewicz, O. (1982). Brain catecholamines in schizophrenia – a good case for noradrenaline. Nature 299, 484486.CrossRefGoogle ScholarPubMed
Iversen, L. L., Reynolds, G. P. & Snyder, S. H. (1983). Pathophysiology of schizophrenia – causal role for dopamine or noradrenaline? Nature 305, 377.CrossRefGoogle ScholarPubMed
Jacob, H. & Beckmann, H. (1986). Prenatal developmental disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission 65, 303326.CrossRefGoogle Scholar
Joseph, M. H., Baker, H. F., Crow, T. J., Riley, G. J. & Risby, D. (1979). Brain tryptophan metabolism in schizophrenia: a postmortem study of metabolism on the serotonin and kynurenine pathways in schizophrenic and control subjects. Psychopharmacology 62, 279285.CrossRefGoogle Scholar
Kleinman, J. E., Karoum, F., Rosenblatt, J., Gillin, J. C., Hong, J., Bridge, T. P., Zalcman, S., Storch, F., Delcarmen, R. & Wyatt, R. J. (1981). Catecholamines and peptides in post-mortem schizophrenic brains. In Biological Psychiatry 1981 (ed. Perris, C., Struwe, G. and Jannson, B.), pp. 711714. Elsevier: Amsterdam.Google Scholar
Kleinman, J. E., Iadorola, M., Govoni, S., Hong, J., Gillin, J. C. & Wyatt, R. J. (1983). Post-mortem measurements of neuropeptides in human brain. Psychopharmacology Bulletin 19, 375377.Google Scholar
Mackay, A. V. P., Iversen, L. L., Rossor, M., Spokes, E., Bird, E., Arregui, A., Creese, I. & Snyder, S. H. (1982). Increased brain dopamine and dopamine receptors in schizophrenia. Archives of General Psychiatry 31, 991997.CrossRefGoogle Scholar
Memo, M., Kleinman, J. E. & Hanbauer, I. (1983). Coupling of dopamine D1 recognition sites with adenylate cyclase in nuclei accumbens and caudatus of schizophrenics. Science 221, 13041307.CrossRefGoogle ScholarPubMed
Owen, F., Crow, T. J., Poulter, M., Cross, A. J., Longden, A. & Riley, G. J. (1978). Increased dopamine-receptor sensitivity in schizophrenia. Lancet ii, 223225.CrossRefGoogle Scholar
Pimoule, C., Schoemaker, H., Reynolds, G. P. & Langer, S. Z. (1985). (3H)SCH 23390 labelled D1 dopamine receptors are unchanged in schizophrenia and Parkinson's disease. European Journal of Pharmacology 11, 235237.CrossRefGoogle Scholar
Reynolds, G. P. (1983). Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305, 527529.CrossRefGoogle ScholarPubMed
Reynolds, G. P. (1987). Postmortem neurochemical studies in schizophrenia. In Search for the Causes of Schizophrenia (ed. Haefner, H., Gattaz, W. F. and Janzarik, W.), pp. 236240. Springer: Heidelberg.CrossRefGoogle Scholar
Reynolds, G. P., Riederer, P., Jellinger, K. & Gabriel, E. (1981). Dopamine receptors and schizophrenia: the neuroleptic drug problem. Neuropharmacology 20, 13191320.Google ScholarPubMed
Reynolds, G. P., Rossor, M. N. & Iversen, L. L. (1983). Preliminary studies of human cortical 5-HT2 receptors and their involvement in schizophrenia and neuroleptic drug action. Journal of of Neural Transmission Suppl. 18, 273277.Google ScholarPubMed
Reynolds, G. P., Czudek, C., Bzowej, N. & Seeman, P. (1987). Dopamine receptor asymmetry in schizophrenia. Lancet i, 979.CrossRefGoogle Scholar
Roberts, G. W., Ferrier, I. N., Lee, Y., Crow, T. J., Johnstone, E. C., Owens, D. G. C., Bacarese-Hamilton, A. J., McGregor, G., O'Shaughnessy, D., Polak, J. M. & Bloom, S. R. (1983). Peptides, the limbic lobe and schizophrenia. Brain Research 288, 199211.CrossRefGoogle ScholarPubMed
Seeman, P., Ulpian, C., Bergeron, C., Riederer, P., Jellinger, K., Gabriel, E., Reynolds, G. P. & Tourtellotte, W. W. (1984). Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 225, 728731.CrossRefGoogle ScholarPubMed
Stein, L. & Wise, C. D. (1971). Possible aetiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171, 10321036.CrossRefGoogle Scholar
Uhl, G. R. & Kuhar, M. J. (1984). Chronic neuroleptic treatment enhances neurotensin receptor binding in human and rat substantia nigra. Nature 309, 350352.CrossRefGoogle ScholarPubMed
Whitaker, P. M., Crow, T. J. & Ferrier, I. N. (1981). Tritiated LSD binding in frontal cortex in schizophrenia. Archives of General Psychiatry 38, 278280.CrossRefGoogle ScholarPubMed
Wise, C. D. & Stein, L. (1973). Dopamine-β-hydroxylase deficits in the brains of schizophrenic patients. Science 181, 344347.CrossRefGoogle ScholarPubMed