Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T04:32:04.446Z Has data issue: false hasContentIssue false

Plasma vanadium concentration in manic-depressive illness

Published online by Cambridge University Press:  09 July 2009

David A. T. Dick*
Affiliation:
Department of Anatomy and Psychiatry, The University, Dundee
Graham J. Naylor
Affiliation:
Department of Anatomy and Psychiatry, The University, Dundee
Elizabeth G. Dick
Affiliation:
Department of Anatomy and Psychiatry, The University, Dundee
*
1Address for correspondence: Professor D. A. T. Dick, Department of Anatomy, The University, Dundee DDI 4HN.

Synopsis

133 samples of plasma taken from 9 normal control and 8 manic-depressive subjects were analysed for vanadium by atomic absorption spectrometry. Mean plasma vanadium concentrations were 0·15 μM in normal control, 0·34 μM in manic and 0·28 μM in depressed subjects, and 0·23 μM in manic-depressive subjects after recovery. The differences between normal subjects and manic and recovered subjects were statistically significant. Significant negative correlations were found between plasma vanadium concentration and the ratio of Na–K–Mg ATPase to Mg–ATPase in 2 manic-depressive subjects, but not in normal subjects. The results suggest that vanadium may be a cause of the variations in Na–K–Mg ATPase and sodium pump activity which are associated with manic-depressive illness.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allaway, W. H., Kubota, J., Losee, F. & Roth, M. (1968). Selenium, molybdenum, and vanadium in human blood. Archives of Environmental Health 16, 342348.CrossRefGoogle ScholarPubMed
Butt, E. M., Nusbaum, R. E., Gilmour, T. C., Didio, S. L. & Mariano, Sister (1964). Trace metal levels in human serum and blood. Archives of Environmental Health 8, 5257.CrossRefGoogle ScholarPubMed
Byrne, A. R. & Kosta, L. (1978). Vanadium in foods and in human body fluids and tissues. Science of the Total Environment 10, 1730.Google Scholar
Cande, W. Z. & Wolniak, S. M. (1978). Chromosome movement in lysed mitotic cells is inhibited by vanadate. Journal of Cell Biology 79, 573580.Google Scholar
Cantley, L. C. & Aisen, P. (1979). The fate of cytoplasmic vanadium. Journal of Biological Chemistry 254 (6), 17811784.Google Scholar
Cantley, L. C., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C. & Guidotti, G. (1977). Vanadate is a potent (Na, K)–ATPase inhibitor found in ATP derived from muscle. Journal of Biological Chemistry 252 (21). 74217423.Google Scholar
Coppen, A. J. (1960). Abnormality of the blood–cerebrospinal fluid barrier of patients suffering from a depressive illness. Journal of Neurolog, Neurosurgery and Psychiatry 23, 156161.Google Scholar
Coppen, A. & Shaw, D. M. (1963). Mineral metabolism in melancholia. British Medical Journal ii, 14391444.CrossRefGoogle Scholar
Coppen, A., Shaw, D. M., Malleson, A. & Costain, R. (1966). Mineral metabolism in mania. British Medical Journal i, 7175.Google Scholar
Cornelis, R., Versieck, J., Mees, L., Hoste, J. & Barbier, F. (1980). Determination of vanadium in human serum by neutron activation analysis. Journal of Radioanalytical Chemistry 55, 3543.CrossRefGoogle Scholar
Dick, D. A. T., Naylor, G. J. & Dick, E. G. (1978). Effects of lithium on sodium transport across membranes. In Lithium in Medical Practice (ed. Johnson, F. N. and Johnson, S.), pp. 173182. MTP Press: Lancaster.Google Scholar
Gibbons, I. R., Cosson, M. P. & Evans, J. A. (1978). Potent inhibitions of dynein adenosine triphosphatase and of the motility of cilia and sperm flagella by vanadate. Proceedings of the National Academy of Sciences USA 75, 22202224.CrossRefGoogle ScholarPubMed
Glen, A. I. M. (1978). Lithium regulation of membrane ATPase. In Lithium in Medical Practice (ed. Johnson, F. N. and Johnson, S.), pp. 183192. MTP Press: Lancaster.Google Scholar
Glen, A. I. M., Ongley, G. C. & Robinson, K. (1968). Diminished membrane transport in manic-depressive psychosis and recurrent depression. Lancet ii, 241243.Google Scholar
Hokin-Naeverson, M., Spiegel, D. A. & Lewis, W. C. (1974). Deficiency of erythrocyte sodium pump activity in bipolar manic depressive psychosis. Life Sciences 15, 17391748.Google Scholar
Myers, T. D., Boerth, R. C. & Post, R. L. (1979). Effects of vanadate on ouabain binding and inhibition of (Na+ + K+)–ATPase. Biochimica et Biophysica Acta 558, 99107.Google Scholar
Naylor, G. J., McNamee, H. B. & Moody, J. P. (1971). Changes in erythrocyte sodium and potassium on recovery from a depressive illness. British Journal of Psychiatry 118, 219223.CrossRefGoogle ScholarPubMed
Naylor, G. J., Dick, D. A. T., Dick, E. G., Le Poidevin, D. & Whyte, S. F. (1973). Erythrocyte membrane cation carrier in depressive illness. Psychological Medicine 3, 502508.Google Scholar
Naylor, G. J., Dick, D. A. T., Dick, E. G. & Moody, J. P. (1974). Lithium therapy and erythrocyte membrane cation carrier. Psychopharmacologia (Berlin) 37, 8186.CrossRefGoogle ScholarPubMed
Naylor, G. J., Dick, D. A. T. & Dick, E. G. (1976 a). Erythrocyte membrane cation carrier in mania. Psychological Medicine 6, 659663.Google Scholar
Naylor, G. J., Dick, D. A. T. & Dick, E. G. (1976 b). Erythrocyte membrane cation carrier, relapse rate of manic-depressive illness and response to lithium. Psychological Medicine 6, 257263.Google Scholar
Naylor, G. J., Smith, A., Boardman, L. J., Dick, D. A. T., Dick, E. G. & Dick, P. (1977). Lithium and erythrocyte membrane cation carrier studies in normal and manic depressive subjects. Psychological Medicine 7, 229233.CrossRefGoogle ScholarPubMed
Naylor, G. J., Smith, A. H. W., Dick, E. G., Dick, D. A. T., McHarg, A. M. & Chambers, C. A. (1980). Erythrocyte membrane cation carrier in manic-depressive psychosis. Psychological Medicine 10, 521525.Google Scholar
Post, R. L., Hunt, D. P., Walderhaug, M. O., Perkins, R. C., Park, J. H. & Beth, A. H. (1979). Vanadium compounds in relation to inhibition of sodium and potassium adenosine triphosphatase. In Na, K–ATPase: Structure and Kinetics (ed. Skou, J. C. and Norby, J. G.), pp. 389401. Academic Press: London.Google Scholar
Quist, E. E. & Hokin, L. E. (1978). The presence of two (Na+ + K+)–ATPase inhibitors in equine muscle ATP: vanadate and a dithioerythritol-dependent inhibitor. Biochemica et Biophysica Acta 511, 202212.Google Scholar
Sabbioni, E., Marafante, E., Pietra, R., Coetz, L., Girardi, F. & Orvini, E. (1979). In Nuclear Activation Techniques in the Life Sciences, 1978, pp. 179192. International Atomic Energy Agency: Vienna.Google Scholar
Schroeder, H. A., Balassa, J. J. & Tipton, I. H. (1963). Abnormal trace metals in man – vanadium. Journal of Chronic Disease 16, 10471071.Google Scholar
Stroop, S. D., Helinek, G. & Greene, H. L. (1982). More sensitive flameless atomic absorption analysis of vanadium in tissue and serum. Clinical Chemistry 28, 7982.CrossRefGoogle ScholarPubMed
Valberg, L. S. & Holt, J. H. (1964). Detection of vanadium in normal human erythrocytes. Life Sciences 3, 12631265.Google Scholar
Wallick, E. T., Lane, L. K. & Schwarts, A. (1979). Regulation by vanadate of ouabain binding to (Na+, K+)–ATPase. Journal of Biological Chemistry 254 (17), 81078109.Google Scholar
Welch, R. M. & Allaway, W. H. (1972). Vanadium determination in biological materials at nanogram levels by a catalytic method. Analytical Chemistry 44 (9), 16441647.Google Scholar