Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T00:15:38.790Z Has data issue: false hasContentIssue false

Multiple reciprocal relationships between in vivo cellular immunity and hypothalamic–pituitary–adrenal axis in depression

Published online by Cambridge University Press:  09 July 2009

M. Maes*
Affiliation:
Department of Psychiatry of the University Hospitals of Cleveland, Ohio, USA; Department of Psychiatry, Department of Immunology and Department of Nuclear Medicine, University Hospital, Antwerp, Belgium
H. Y. Meltzer
Affiliation:
Department of Psychiatry of the University Hospitals of Cleveland, Ohio, USA; Department of Psychiatry, Department of Immunology and Department of Nuclear Medicine, University Hospital, Antwerp, Belgium
W. Stevens
Affiliation:
Department of Psychiatry of the University Hospitals of Cleveland, Ohio, USA; Department of Psychiatry, Department of Immunology and Department of Nuclear Medicine, University Hospital, Antwerp, Belgium
P. Cosyns
Affiliation:
Department of Psychiatry of the University Hospitals of Cleveland, Ohio, USA; Department of Psychiatry, Department of Immunology and Department of Nuclear Medicine, University Hospital, Antwerp, Belgium
P. Blockx
Affiliation:
Department of Psychiatry of the University Hospitals of Cleveland, Ohio, USA; Department of Psychiatry, Department of Immunology and Department of Nuclear Medicine, University Hospital, Antwerp, Belgium
*
1Address for correspondence. Dr Michael Maes, Department of Psychiatry, University Hospitals of Cleveland, Hanna Pavilion, Room B-68, 2040 Abington Road, Cleveland, Ohio 44106, USA.

Synopsis

Major depression is reportedly characterized by increased activity of the hypothalamic–pituitary–adrenal (HPA) axis and by in vivo immune activation. The present study was carried out in order to investigate the relationships between HPA-axis activity and in vivo immune function in depression. Towards this end the following parameters were measured: 24 h urinary cortisol (UC) excretion; basal and post-dexamethasone (DST) plasma cortisol, β-endorphin/β-lipotropin (βEND/βLPH) and dexamethasone concentrations; and leucocyte subsets (i.e. lymphocytes, neutrophils, monocytes, CD4+, CD4+CD45RA+, CD4+CD45RO+, CD8+, CD8+CD57+, CD8+CD57, HLA-DR+, CD25+ T cells, HLA-DR+, CD19+, CD20+, and CD21+ B cells) both pre-and post-DST. Dexamethasone administration (1 mg orally) induced leucocytosis, lymphocytopaenia, monocytopaenia and neutrophilia. HPA-axis non-suppressors exhibited a relative resistance to the enhancing (e.g. neutrophils) or depressant (e.g. lymphocytes, CD4+ T cells) effects of dexamethasone. There were significant correlations between UC excretion and the number of percentage of lymphocytes, monocytes, CD4+CD45RA+ and CD8+CD57 T cells (negatively) and neutrophils (positively). It is concluded that multiple and complex intertwined relationships between HPA-axis hyperactivity and systemic immune stimulation participate in the pathophysiology or pathogenesis of major depression.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almawi, W. Y., Lipman, M. L., Stevens, A. C., Zanker, B., Hadro, E. T. & Strom, T. B. (1991). Abrogation of glucocorticoid-mediated inhibition of T cell proliferation by the synergistic action of IL-1, IL-6, and 1FN-gamma. Journal of Immunology 146, 35233527.CrossRefGoogle Scholar
American Psychiatric Association (1980). Diagnostic and Statistical Manual of Mental Disorders, 3rd edn. American Psychiatric Association: Washington, DC.Google Scholar
Berczi, I. (1986). The influence of pituitary–adrenal axis on the immune system. In Pituitary Function and Immunity (ed. Berczi, I.), pp. 133160. CRC Press: Boca Raton.Google Scholar
Berkenbosch, F., Oers, J. V. & Rey, A. D. (1987). Corticotrophin-releasing-factor-producing neurons in the rat activated by interleukin-1. Science 238, 524526.CrossRefGoogle ScholarPubMed
Blalock, E. J. (1984). Relationships between neuroendocrine hormones and lymphokines. Lymphokines 9, 113.Google Scholar
Bloemena, A., Van Oers, M. H. J., Weinreich, S., Yong, S.-L. & Schellekens, P. T. A. (1988). Prednisolone and cyclosporin A exert differential inhibitory effects on T cell proliferation in vitro. Clinical Immunology and Immunopathology 48, 380391.CrossRefGoogle ScholarPubMed
Bloemena, E. (1989). Immunosuppressive mechanisms of prednisolone and cyclosporin A. Ph.D. thesis, University of Amsterdam.Google Scholar
Brown, S. L., Smith, L. R. & Blalock, J. E. (1987). Interleukin-1 and interleukin-2 enhance proopiomelanocortin gene expression in pituitary cells. Journal of Immunology 139, 31813183.CrossRefGoogle ScholarPubMed
Carroll, B. J. (1980). Clinical application of neuroendocrine research in depression. In Handbook of Biological Psychiatry, Part III: Brain Mechanisms and Abnormal Behavior – Genetics and Neuro-endocrinology (ed. van Praag, H. M., Lader, M. H., Rafaelson, O. J. and Sachar, E. J.), pp. 179193. Marcel Dekker: New York.Google Scholar
Charles, G., Machowski, R., Brohee, D., Wilmotte, J. & Kennes, B. (1992). Lymphocyte subsets in major depressive patients. Neuro-psychobiology 25, 9498.Google ScholarPubMed
Claman, H. (1972). Corticosteroids and lymphoid cells. New England Journal of Medicine 287, 388397.CrossRefGoogle ScholarPubMed
Deberdt, R., Van Hooren, J., Biesbrouk, M. & Amery, W. (1976). Antinuclear factor positive in mental depression: a single disease entity? Biological Psychiatry 11, 6974.Google ScholarPubMed
Deinard, A. S. & Page, A. R. (1974). A study of steroid-induced granulocytosis in a patient with chronic benign neutropenia of childhood. British Journal of Haematology 28, 333.CrossRefGoogle Scholar
Dunn, A. J. (1988). Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism paralleling the increased plasma corticosterone. Life Sciences 43, 429435.CrossRefGoogle Scholar
Dunn, A. J. & Welch, J. (1991). Stress- and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. Journal of Neurochemistry 57, 16151622.CrossRefGoogle ScholarPubMed
Dunn, A. J., Powell, M. L., Meitin, C. & Small, P. A. Jr. (1989). Virus infection as a stressor: influenza virus elevates plasma concentrations of corticosterone, and brain concentrations of MHPG and tryptophan. Physiology and Behaviour 45, 591594.CrossRefGoogle ScholarPubMed
Farrar, W. L. (1986). Relationship between lymphokine and opiatergic modulation of lymphocyte proliferation. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, A. J.), pp. 241252. Plenum Press: New York.CrossRefGoogle Scholar
Fauci, A. S. (1975). Mechanisms of corticosteroid action on lymphocyte subpopulations. I. Redistribution of circulating T and B lymphocytes to the bone marrow. Immunology 28, 669680.Google Scholar
Gastpar, M. & Muller, W. (1981). Autoantibodies in affective disorders. Progress in Neuropsychopharmacology and Biological Psychiatry 5, 9196.CrossRefGoogle ScholarPubMed
Gilman, S. C., Schwartz, J. M., Milner, R. J., Bloom, F. E. & Feldman, J. D. (1982). Beta-endorphin enhances lymphocyte proliferative responses. Proceedings of the National Academy of Sciences of the USA 79, 42264230.CrossRefGoogle ScholarPubMed
Gormley, G. J., Lowy, M. T., Reder, A. T., Hospelhorn, V. D., Antel, J. P. & Meltzer, H. Y. (1985). Glucocorticoid receptors in depression: relationship to the dexamethasone suppression test. American Journal of Psychiatry 43, 12781284.Google Scholar
Hall, N. R., McGillis, J. P., Spangelo, B. L. & Goldstein, A. L. (1985). Evidence that thymosins and other biologic response modifiers can function as neuroactive immunotransmitter. Journal of Immunology 135 (2 suppl.), 806811.CrossRefGoogle Scholar
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry 23, 5661.CrossRefGoogle ScholarPubMed
Haynes, B. F. & Fauci, A. S. (1979). Mechanisms of corticosteroid action of lymphocyte subpopulations. IV. Effects of in vitro hydrocortisone on naturally occurring and mitogen-induced suppressor cells in man. Cellular Immunology 44, 157161.CrossRefGoogle ScholarPubMed
Heinrich, P. C., Castell, J. V. & Andus, T. (1990). Review article: interleukin-6 and the acute phase response. Biochemical Journal 265, 621636.CrossRefGoogle ScholarPubMed
Hendricks, H. P. & Eestermans, I. L. (1983). Disappearance and reappearance of high endothelial venules and immigrating lymphocytes in lymph nodes deprived of afferent lymphatic vessels: a possible regulatory role of macrophages in lymphocyte migration. European Journal of Immunology 13, 663669.CrossRefGoogle Scholar
LeMay, L. G., Vander, A. J. & Kluger, M. J. (1990). The effects of psychological stress on plasma interleukin-6 activity in rats. Physiology and Behaviour 47, 957961.CrossRefGoogle ScholarPubMed
Lew, W., Oppenheim, J. J. & Matsushima, K. (1988). Analysis of the suppression of I1–1α and I1–1β production in human peripheral blood mononuclear adherent cells by a glucocorticoid hormone. Journal of Immunology 6, 18951902.CrossRefGoogle Scholar
Lowy, M. T., Gormley, G. J., Reder, A. T., Hospelhorn, V. D., Antel, J. P. & Meltzer, H. Y. (1987). Glucocorticoid receptor function in depression. In Hormones and Depression (ed. Halbreich, U.), pp. 97112. Raven Press: New York.Google Scholar
McCain, H. W., Lamster, I. B., Bozzone, J. M. & Grbic, J. T. (1982). β-endorphin modulates human immune activity via non-opiate receptor mechanisms. Life Sciences 31, 16191624.CrossRefGoogle ScholarPubMed
Maes, M. (1991). The interrelationships between the pre and postdexamethasone plasma cortisol values, urinary free cortisol, dexamethasone levels, age and DSM-III classification: results of a pathway analysis. In Biological Markers of Depression: State of the Art (ed. Ansseau, M., von Frenckell, R. and Franck, G.), pp. 1925. Elsevier: Amsterdam.Google Scholar
Maes, M., De Ruyter, M., Hobin, P. & Suy, E., (1986). The dexamethasone suppression test, the Hamilton Depression Rating Scale and the DSM-III depressive categories. Journal of Affective Disorders 10, 207214.CrossRefGoogle ScholarPubMed
Maes, M., Bosmans, E., Suy, E., Minner, B. & Raus, J. (1989). The impaired mitogen lymphocyte stimulation in severely depressed patients: a complex interface between HPA-axis hyperfunction, noradrenergic activity and the ageing process. British Journal of Psychiatry 155, 793798.CrossRefGoogle ScholarPubMed
Maes, M., Vandewoude, M., Schotte, C., Martin, M. & Blockx, P. (1990). Positive relationships between the catecholaminergic turnover and the DST results in depression. Psychological Medicine 20, 493499.CrossRefGoogle ScholarPubMed
Maes, M., Bosmans, E., Suy, E., Minner, B. & Raus, J. (1991 a). A further exploration of the relationships between immune parameters and the HPA-axis activity in depressed in-patients. Psychological Medicine 21, 313320.CrossRefGoogle Scholar
Maes, M., Bosmans, E., Suy, E., Vandervorst, C., Dejonckheere, C., Minner, B. & Raus, J. (1991 b). Depression-related disturbances in mitogen-induced lymphocyte responses, interleukin-1β, and soluble interleukin-2-receptor production. Acta Psychiatrica Scandinavica 84, 379386.CrossRefGoogle Scholar
Maes, M., Bosmans, E., Suy, E., Vandervorst, C., Dejonckheere, C. & Raus, J. (1991 c). Antiphospholipid, anti-nuclear, Epstein–Barr and cytomegalovirus antibodies, and soluble interleukin-2 receptors in depressive patients. Journal of Affective Disorders 21, 133140.CrossRefGoogle Scholar
Maes, M., De Meester, I., Vanhoof, G., Scharpé, S., Bosmans, E., Vandervorst, C., Verkerk, R., Minner, B., Suy, E. & Raus, J. (1991 d). Decreased serum dipeptaidyl-peptidase activity in major depression. Biological Psychiatry 30, 577586.CrossRefGoogle ScholarPubMed
Maes, M., Vandervorst, C., Suy, E., Minner, B. & Raus, J. (1991 e). A multivariate study on the simultaneous urinary free cortisol, plasma cortisol, adrenocorticotropic hormone and β-endorphin escape from suppression by dexamethasone in melancholic patients. Acta Psychiatrica Scandinavica 3, 480491.CrossRefGoogle Scholar
Maes, M., Vandewoude, M., Scharpé, S., DeClerck, L., Stevens, W., Lepoutre, L. & Schotte, C. (1991 f). Anthropometric and biochemical assessment of the nutritional state in depression: evidence for lower visceral protein plasma levels in depression. Journal of Affective Disorders 23, 2533.CrossRefGoogle ScholarPubMed
Maes, M., Lambrechts, J., Bosmans, E., Jacobs, J., Suy, E., Vandervorst, C., De Jonckheere, C., Minner, B. & Raus, J. (1992 a). Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychological Medicine 22, 4553.CrossRefGoogle ScholarPubMed
Maes, M., Meltzer, H. Y., Scharpé, S., Uyttenbroeck, W., Cooremans, W., Suy, E., Vandervorst, C., Raus, J. & Cosyns, P. (1992 b). Psychomotor retardation, anorexia, weight loss, sleep disturbances and loss of energy: psychopathological correlates of hyperhaptoglobinemia during major depression. Psychiatry Research 47, 229241.CrossRefGoogle Scholar
Maes, M., Scharpé, S., Bosmans, E., Vandewoude, M., Suy, E., Uyttenbroeck, W., Cooreman, W., Vandervorst, C. & Raus, J. (1992 c). Disturbances in acute phase plasma proteins: additional evidence for the presence of an inflammatory process during that illness. Progress in Psychopharmacology and Biological Psychiatry 16, 501515.Google ScholarPubMed
Maes, M., Scharpé, S., Van Grootel, L., Uyttenbroeck, W., Cooreman, W., Cosyns, P. & Suy, E. (1992 d). Higher α1-antitrypsin, haptoglobin, ceruloplasmin and lower retinol binding protein plasma levels during depression: further evidence for the existence of an inflammatory response during that illness. Journal of Affective Disorders 24, 183192.CrossRefGoogle Scholar
Maes, M., Stevens, W., DeClerck, L., Bridts, C., Peeters, D., Schotte, C. & Cosyns, P. (1992 e). Immune disorders in depression: higher T helper/T suppressor-cytotoxic cell ratio. Acta Psychiatrica Scandinavica 86, 423431.CrossRefGoogle ScholarPubMed
Maes, M., Stevens, W. J., DeClerck, L. S., Bridts, C. H., Peeters, D., Schotte, C. & Cosyns, P. (1992 f). A significantly increased number and percentage of B cells in depressed subjects: results of flow cytometric measurements. Journal of Affective Disorders 24, 127134.CrossRefGoogle ScholarPubMed
Maes, M., Stevens, W., DeClerck, L., Bridts, C., Peeters, D., Schotte, C. & Cosyns, P. (1992 g). A significantly increased expression of T cell activation markers in depression: additional evidence for an inflammatory process during that illness. Progress in Psychopharmacology and Biological Psychiatry 17, 241255.Google Scholar
Maes, M., Stevens, W., Peeters, D., DeClerck, L., Scharpé, S., Bridts, C., Schotte, C. & Cosyns, P. (1992 h). A study on the blunted natural killer cell activity in severely depressed patients. Life Sciences 50, 505513.CrossRefGoogle Scholar
Maes, M., Van der Planken, M., Stevens, W., Peeters, D., DeClerck, L., Bridts, C., Schotte, C. & Cosyns, P. (1992 i). Leukocytosis, monocytosis and neutrophilia: hallmarks of severe depression. Journal of Psychiatric Research 22, 4553.Google Scholar
Maes, M., Bosmans, E., Meltzer, H., Scharpe, S. & Suy, E. (1993 a). Interleukin-1β: a putative mediator of HPA-axis hyperactivity in major depression? American Journal of Psychiatry 150, 11891193.Google Scholar
Maes, M., Scharpe, S., Meltzer, H. Y., Bosmans, E., Suy, E., Minner, B., Calabrese, J., Uyttenbroeck, W., Vandervorst, C., Raus, J. & Cosyns, P. (1993 b). Relationship between interleukin-6 activity, acute phase proteins and HPA-axis function in severe depression. Psychiatry Research (in the press).CrossRefGoogle Scholar
Maes, M., Meltzer, H. Y., Jacobs, Y., Suy, E., Calabrese, J., Minner, B. & Raus, J. (1993 c). Autoimmunity in depression: higher phospholipid autoantibody titers. Acta Psychiatrica Scandinavica 87, 160166.CrossRefGoogle Scholar
Matta, S., Singh, J., Newton, R. & Sharp, B. M. (1990). The adrenocorticotropin response to interleukin-1 beta instilled into the rat median eminence depends on the local release of catecholamines. Endocrinology 127, 21752182.CrossRefGoogle ScholarPubMed
Naitoh, Y., Fukato, J., Tominaga, T., Nakai, Y., Tamai, S., Mori, K. & Imura, H. (1988). Interleukin-6 stimulates the secretion of adrenocorticotropic hormone in conscious freely-moving rats. Biochemistry and Biophysiology Research Communications 155, 14591466.CrossRefGoogle ScholarPubMed
Navarra, P., Tsagarakis, S., Faria, M. S., Rees, L. H., Besser, G. M. & Grossman, A. B. (1991). Interleukins-1 and -6 stimulate the release of corticotrophin-releasing hormone 41 from rat hypothalamus in vitro via the eicosanoid cyclooxygenase pathway. Endocrinology 128, 3744.CrossRefGoogle ScholarPubMed
Nieto, M. A. & Lopez-Rivas, A. (1989). IL-2 protects T lymphocytes from glucocorticoid-induced DNA fragmentation and cell death. Journal of Immunology 12, 41664170.CrossRefGoogle Scholar
Osheroff, P. L. (1981). The effect of thymosin on glucocorticoid receptors in lymphoid cells. Cell Immunology 60, 376385.CrossRefGoogle ScholarPubMed
Ottaway, C. A. & Husband, A. J. (1992). Review: central nervous system influences on lymphocyte migration. Brain, Behavior, and Immunity 6, 97116.CrossRefGoogle ScholarPubMed
Rinner, I., Schauenstein, K., Mangge, H., Porta, S. & Kvetnansky, R. (1992). Opposite effects of mild and severe on in vitro activation of rat peripheral blood lymphocytes. Brain, Behavior, and Immunity 6, 130140.CrossRefGoogle ScholarPubMed
Rivier, C., Vale, W. & Brown, M. (1989). In the rat, interleukin-1 alpha and beta stimulate adrenocorticotropin and catecholamine release. Endocrinology 125, 30963102.CrossRefGoogle ScholarPubMed
Roitt, I. M., Brostoff, J. & Male, D. K. (1985). Immunology. Gower Medical Publishing: New York.Google Scholar
Sapolsky, R., Rivier, C., Yamamoto, G., Plotsky, P. & Vale, W. (1987). Interleukin-1 stimulates the secretion of hypothalamic corticotrophin releasing factor. Science 238, 522524.CrossRefGoogle Scholar
Smith, E. M. & Blalock, J. E. (1986). A complete ‘regulatory loop between the immune and neuroendocrine systems operates through common signal molecules (hormones) and receptors. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 119128. Plenum Press: New York.CrossRefGoogle Scholar
Snyder, D. S. & Unanue, E. R. (1982). Corticosteroids inhibit murine macrophage la expression and interleukin-1 production. Journal of Immunology 129, 18031805.CrossRefGoogle Scholar
Spitzer, R. L., Williams, J. B. W. & Gibbon, M. (1985). Structured Clinical Interview for DSM-III Patient Version. Biometrics Research Department, New York State Psychiatric Institute, 722 West 168th Street, New York, NY 10032.Google Scholar
ten Berge, R. J. M., Sauerwein, H. P., Yong, S.-L. & Schellekens, P. Th. A. (1984). Administration of prednisolone in vivo affects the ratio of OKT4/OKT8 and the LDH-isoenzyme pattern of human T lymphocytes. Clinical Immunology and Immunopathology 30, 9197.CrossRefGoogle ScholarPubMed
Thompson, J. & van Furth, R. (1973). The effect of glucocorticoids on the proliferation and kinetics of promonocytes and monocytes of the bone marrow. Journal of Experimental Medicine 137, 10.CrossRefGoogle Scholar
Tominaga, T., Fukata, J., Naito, Y., Usui, T., Murakami, N., Fukushima, M., Nakai, Y., Hirai, Y. & Imura, H. (1991). Prostaglandin-dependent in vitro stimulation of adrenocortical steroidogenesis by interleukins. Endocrinology 128, 526531.CrossRefGoogle ScholarPubMed
Waage, A., Slupphaug, G. & Shalaby, R. (1990). Glucocorticoids inhibit the production of II-6 from monocytes, endothelial cells and fibroblasts. European Journal of Immunology 20, 24392443.CrossRefGoogle Scholar
Walzer, P. D., LaBine, M., Redington, T. J. & Cushion, M. T. (1984). Lymphocyte changes during chronic administration of and withdrawal from corticosteroids: relation to pneumocystis carinii pneumonia. Journal of Immunology 133, 25022508.CrossRefGoogle ScholarPubMed
Whalley, L. J., Borthwick, N., Copolov, D., Dick, H., Christie, J. E. & Fink, G. (1986). Glucocorticoid receptors and depression. British Medical Journal 292, 859861.CrossRefGoogle ScholarPubMed
Woloski, B. M. R. N. J., Smith, E. M., Meyer, W. J. III, Fuller, G. M., Blalock, J. E. (1985). Corticotrophin-releasing activity of monokines. Science 230, 10351038.CrossRefGoogle Scholar
Wyllie, A. H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555556.CrossRefGoogle ScholarPubMed