Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T20:59:14.788Z Has data issue: false hasContentIssue false

Medical Research Council Neuropsychiatry Unit, Carshalton and Epsom, Surrey

Published online by Cambridge University Press:  09 July 2009

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Report
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES AND BIBLIOGRAPHY

Ansell, G. B., and Dohmen, H. (1957). The metabolism of individual phospholipids in the rat brain during hypoglycaemia, anaesthesia and convulsions. Journal of Neurochemistry, 2, 110.CrossRefGoogle Scholar
Ansell, G. B., and Richter, D. (1954). The proteolytic activity of brain tissue. Evidence for a ‘neutral proteinase’ in brain tissue. Biochemica et Biophysica Acta, 13, 8789.CrossRefGoogle Scholar
Balázs, R. (1959). The point of the aerobic inhibition of glycolytic activity associated with brain mitochondria. Biochemical Journal, 72, 561574.CrossRefGoogle ScholarPubMed
Balázs, R. (1971). Effects of hormones on the biochemical maturation of the brain. In Influence of Hormones on the Nervous System, pp. 150164. Edited by Ford, D. H.. Karger: Basel.Google Scholar
Balázs, R., and Cremer, J. (1972). Metabolic Compartmentation in the Brain. Macmillan: London. (In press.)Google Scholar
Balázs, R., Machiyama, Y., Hammond, B. J., Julian, T., and Richter, D. (1970). The operation of the γ-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochemical Journal, 116, 445467.Google ScholarPubMed
Balázs, R., and Richter, D. (1961). The regulation of glucose metabolism in the brain. In Regional Neurochemistry. Proceedings of the Fourth International Neurochemical Symposium, 1960, pp. 4956. Edited by Kety, S. S. and Elkes, J.. Pergamon Press: Oxford.Google Scholar
Brierley, J. B., Brown, A. W., and Meldrum, B. S. (1971). The nature and time course of the neuronal alterations resulting from oligaemia and hypoglycaemia in the brain of Macaca mulatta. Brain Research, 25, 483499.CrossRefGoogle ScholarPubMed
Brierley, J. B., and Meldrum, B. S. eds. (1971). Brain Hypoxia. Clinics in Developmental Medicine No. 39/40. Heinemann: London.Google Scholar
Brierley, J. B., and Miller, A. A. (1966). Fatal brain damage after dental anaesthesia. Lancet, 2, 869873.CrossRefGoogle ScholarPubMed
Brooksbank, B. W. L., Cunningham, A. E., and Wilson, D. A. (1969). The detection of androsta-4, 16-dien-3-one in perrpheral plasma of adult men. Steroids, 13, 2950.CrossRefGoogle ScholarPubMed
Brooksbank, B. W. L., MacSweeney, D. A., Johnson, A. L., Cunningham, A. E., Wilson, D. A., and Coppen, A. (1970). Androgen excretion and physique in schizophrenia. British Journal of Psychiatry, 117, 413420.CrossRefGoogle ScholarPubMed
Brooksbank, B. W. L., Wilson, D. A. A., and MacSweeney, D. A. (1972). Fate of androsta-4, 16-dien-3-one and the origin of 3 αhydroxy-5αandrosta-16-ene in man. Journal of Endocrinology, 52, 239251.CrossRefGoogle ScholarPubMed
Brown, A. W., and Brierley, J. B. (1968). The nature, distribution and earliest stages of anoxic-ischaemic nerve cell damage in the rat brain as defined by the optical microscope. British Journal of Experimental Pathology, 49, 87106.Google ScholarPubMed
Clouet, D. H., and Richter, D. (1959). The incorporation of [35S]-labelled methionine into the proteins of the rat brain. Journal of Neurochemistry, 3, 219229.CrossRefGoogle ScholarPubMed
Cohn, P., Gaitonde, M. K., and Richter, D. (1954). The localization of protein formation in the rat brain. Journal of Physiology, 126, 7P.Google ScholarPubMed
Coppen, A. J. (1965). Mineral metabolism in affective disorders. British Journal of Psychiatry, 111, 11331142.CrossRefGoogle ScholarPubMed
Coppen, A. J., Brooksbank, B. W. L., Noguera, R., and Wilson, D. A. (1971). Cortisol in the cerebrospinal fluid of patients suffering from affective disorders. Journal of Neurology, Neurosurgery and Psychiatry, 34, 432435.Google ScholarPubMed
Coppen, A. J., and Metcalfe, M. (1965). Effect of a depressive illness on M.P.I. scores. British Journal of Psychiatry, 111, 236239.CrossRefGoogle ScholarPubMed
Coppen, A. J., Metcalfe, M., Carroll, J. D., and Morris, J. G. L. (1972). Levodopa and L-tryptophan therapy in parkinsonism. Lancet, 1, 654658.CrossRefGoogle ScholarPubMed
Coppen, A. J., Noguera, R., Bailey, J., Burns, B. H., Swani, M. S., Hare, E. H., Gardner, R., and Maggs, R. (1971). Prophylactic lithium in affective disorders. Controlled trial. Lancet, 2, 275279.CrossRefGoogle ScholarPubMed
Coppen, A. J., and Shaw, D. M. (1963). Mineral metabolism in melancholia. British Medical Journal, 2, 14391444.CrossRefGoogle ScholarPubMed
Coppen, A. J., Shaw, D. M., and Farrell, J. P. (1963). Potentiation of the antidepressive effect of a monoamine-oxidase inhibitor by tryptophan. Lancet, 1, 7981.CrossRefGoogle ScholarPubMed
Croft, P. G. (1952). The assessment of pain perception. Journal of Mental Science, 98, 427432.CrossRefGoogle ScholarPubMed
David, G. B., Brown, A. W., and Mallion, K. B. (1959). On the distribution of synaptic end-feet (boutons terminaux) in the central nervous System of the cat. Journal of Physiology, 147, 5556P.Google Scholar
Dawson, R. M. C., and Richter, D. (1950). The effect of stimulation on the phosphate esters of the brain. American Journal of Physiology, 160, 203211.CrossRefGoogle ScholarPubMed
Dawson, R. M. C., and Richter, D. (1950). The phosphorus metabolism of the brain. Proceedings of the Royal Society B, 137, 252267.Google ScholarPubMed
Gaitonde, M. K., Marchi, S. A., and Richter, D. (1964). The utilization of glucose in the brain and other organs of the cat. Proceedings of the Royal Society B, 160, 124136.Google ScholarPubMed
Gaitonde, M. K., and Martenson, R. E. (1970). Metabolism of highly basic proteins of rat brain during postnatal development. Journal of Neurochemistry, 17, 551563.CrossRefGoogle ScholarPubMed
Gaitonde, M. K., and Richter, D. (1953). Protein synthesisin the rat brain. Biochemical Journal, 55, viii.Google Scholar
Gaitonde, M. K., and Richter, D. (1956). The metabolic activity of the proteins of the brain. Proceedings of the Royal Society B, 145, 8399.Google Scholar
Gaitonde, M. K., and Richter, D. (1957). The metabolism of 35S-methionine in the brain. In Metabolism of the Nervous System, pp. 449455. Edited by Richter, D.. Pergamon Press: Oxford.CrossRefGoogle Scholar
Gaitonde, M. K., and Richter, D. (1966). Changes with age in the utilization of glucose car bon in liver and brain. Journal of Neurochemistry, 13, 13091316.CrossRefGoogle Scholar
Gaull, G., and Gaitonde, M. K. (1966). Homocystinuria: an observation on the inheritance of cystathionine synthase deficiency. Journal of Medical Genetics, 3, 194197.CrossRefGoogle ScholarPubMed
Herzberg, B. N., Draper, K. C., Johnson, A. L., and Nicol, G. C. (1971). Oral contraceptives, depression, and libido. British Medical Journal, 3, 495500.CrossRefGoogle ScholarPubMed
Ingham, J. G. (1955). Psychoneurosis and suggestibility. Journal of Abnormal and Social Psychology, 51, 600603.CrossRefGoogle ScholarPubMed
Lawson, D., Metcalfe, M., and Pampiglione, G. (1965). Meningitis in childhood. British Medical Journal, 1, 557562.CrossRefGoogle ScholarPubMed
Machiyama, Y., Balázs, R., and Richter, D. (1967). Effect of K+-stimulation on GABA metabolism in brain slices in vitro. Journal of Neurochemistry, 14, 591594.CrossRefGoogle ScholarPubMed
MacSweeney, D. (1972). The heroin ‘experiment’ in the United Kingdom. International Journal of Environmental Studies, 3, 99103.CrossRefGoogle Scholar
Medical Research Council (1970). Biochemical Research in Psychiatry. Survey and Proposals. HMSO: London.Google Scholar
Meldrum, B. S. (1965). The actions of snake venoms on nerve and muscle. Pharmacohgical Reviews, 17, 393445.Google ScholarPubMed
Meldrum, B. S., and Horton, R. W. (1971). Convulsive effects of 4-deoxypyridoxine and of bicuculline in photosensitive baboons (Papia papia) and in rhesus monkeys (Macaca mulatta). Brain Research, 35, 419436.CrossRefGoogle Scholar
Patel, A. J., Balázs, R., and Richter, D. (1970). Contribution of the GABA bypath to glucose oxidation, and the development of compartmentation in the brain. Nature, 226, 11601161.CrossRefGoogle ScholarPubMed
Reynolds, E. H. (1970). Water, electrolytes and epilepsy. Journal of Neurological Sciences, 11, 327358.CrossRefGoogle ScholarPubMed
Richter, D.(ed.)(1950). Perspectives in Neuropsychiatry, Lewis: London.Google Scholar
Richter, D. (ed.) (1957). Schizophrenia. Somatic Aspects. Pergamon Press: Oxford.Google Scholar
Richter, D. (ed.) (1957). Metabolism of the Nervous System. Pergamon Press: Oxford.Google Scholar
Richter, D. (1961). Enzymic activity during early development. British Medical Bulletin, 17, 118121.CrossRefGoogle ScholarPubMed
Richter, D. (ed.) (1964). Comparative Neurochemistry. Proceedings of the Fifth International Neurochemical Symposium, St. Wolfgang, Austria, 1962. Pergamon Press: Oxford.Google Scholar
Richter, D. (1966). Aspects of Learning and Memory. Heinemann: London.Google Scholar
Richter, D. (1970). Drug Problems and their Management. Association for the Prevention of Addiction: London.Google Scholar
Richter, D. (ed.) (1972). The Challenge of Violence. Ardua Press: Tadworth.Google Scholar
Richter, D., and Crossland, J. (1949). Variation in acetylcholine content of the brain with physiological state. American Journal of Physiology, 159, 247255.CrossRefGoogle ScholarPubMed
Richter, D., and Dawson, R. M. C. (1948a). Brain metabolism in emotional excitement and in sleep. American Journal of Physiology, 154, 7379.CrossRefGoogle ScholarPubMed
Richter, D., and Dawson, R. M. C. (1948b). The ammonia and glutamine content of the brain. Journal of Biological Chemistry, 176, 11991210.CrossRefGoogle ScholarPubMed
Richter, D., and Hullin, R. P. (1949). Isolated nuclei from cells of the cerebral cortex. Biochemical Journal, 44, lV.Google Scholar
Shaw, D. M., Camps, F. E., and Eccleston, E. G. (1967). 5-Hydroxytryptamine in the hind-brain of depressive suicides. British Journal of Psychiatry, 113, 14071411.Google ScholarPubMed
Shaw, D. M., Camps, F. E., Robinson, A. E., Short, R., and White, S. (1970). Electrolyte content of the brain in alcoholism. British Journal of Psychiatry, 116, 185193.CrossRefGoogle ScholarPubMed
Shaw, D. M., Johnson, A. L., and Short, R. (1972). Effect of imipramine, reserpine und lithium on the fate of intra-venously injected [1 4C]tryptophan. Mathematical Biosciences. (In press.)Google Scholar
Shaw, D. M., MacSweeney, D. A., Johnson, A. L., O'Keeffe, R., Naidoo, D., Macleod, D. M., Jog, S., Preece, J. M., and Crowley, J. M. (1971). Folateand amine metabolites in senile dementia. Psychological Medicine, 1, 166171.CrossRefGoogle Scholar
Vrba, R., Gaitonde, M. K., and Richter, D. (1962). The conversion of glucose carbon into protein in the brain und other organs of the rat. Journal of Neurochemistry, 3, 465475.CrossRefGoogle Scholar
Watkins, J. C. (1971). The effects of excitatory and inhibitory amino acids on the metabolism of endogenous brain amino acids in the nembutalized mouse. Brain Research, 29, 293313.CrossRefGoogle Scholar