Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Rost, Nicolas
Brückl, Tanja M.
Koutsouleris, Nikolaos
Binder, Elisabeth B.
and
Müller-Myhsok, Bertram
2022.
Creating sparser prediction models of treatment outcome in depression: a proof-of-concept study using simultaneous feature selection and hyperparameter tuning.
BMC Medical Informatics and Decision Making,
Vol. 22,
Issue. 1,
Rutten, Bart P.F.
and
van Bronswijk, Suzanne C.
2022.
Proof-of-Principle Study on ECT Illustrates Challenges and Possible Merits of Using Polygenic Risk Scores to Predict Treatment Response in Psychiatry.
American Journal of Psychiatry,
Vol. 179,
Issue. 11,
p.
794.
Harris, Jacqueline K.
Hassel, Stefanie
Davis, Andrew D.
Zamyadi, Mojdeh
Arnott, Stephen R.
Milev, Roumen
Lam, Raymond W.
Frey, Benicio N.
Hall, Geoffrey B.
Müller, Daniel J.
Rotzinger, Susan
Kennedy, Sidney H.
Strother, Stephen C.
MacQueen, Glenda M.
and
Greiner, Russell
2022.
Predicting escitalopram treatment response from pre-treatment and early response resting state fMRI in a multi-site sample: A CAN-BIND-1 report.
NeuroImage: Clinical,
Vol. 35,
Issue. ,
p.
103120.
Bernal, Jose
and
Mazo, Claudia
2022.
Transparency of Artificial Intelligence in Healthcare: Insights from Professionals in Computing and Healthcare Worldwide.
Applied Sciences,
Vol. 12,
Issue. 20,
p.
10228.
Lee, Chi Tak
Palacios, Jorge
Richards, Derek
Hanlon, Anna K.
Lynch, Kevin
Harty, Siobhan
Claus, Nathalie
Swords, Lorraine
O’Keane, Veronica
Stephan, Klaas E
and
Gillan, Claire M
2023.
The Precision in Psychiatry (PIP) study: Testing an internet-based methodology for accelerating research in treatment prediction and personalisation.
BMC Psychiatry,
Vol. 23,
Issue. 1,
Schwartzmann, Benjamin
Dhami, Prabhjot
Uher, Rudolf
Lam, Raymond W.
Frey, Benicio N.
Milev, Roumen
Müller, Daniel J.
Blier, Pierre
Soares, Claudio N.
Parikh, Sagar V.
Turecki, Gustavo
Foster, Jane A.
Rotzinger, Susan
Kennedy, Sidney H.
and
Farzan, Faranak
2023.
Developing an Electroencephalography-Based Model for Predicting Response to Antidepressant Medication.
JAMA Network Open,
Vol. 6,
Issue. 9,
p.
e2336094.
Sajjadian, Mehri
Uher, Rudolf
Ho, Keith
Hassel, Stefanie
Milev, Roumen
Frey, Benicio N.
Farzan, Faranak
Blier, Pierre
Foster, Jane A.
Parikh, Sagar V.
Müller, Daniel J.
Rotzinger, Susan
Soares, Claudio N.
Turecki, Gustavo
Taylor, Valerie H.
Lam, Raymond W.
Strother, Stephen C.
and
Kennedy, Sidney H.
2023.
Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report.
Psychological Medicine,
Vol. 53,
Issue. 12,
p.
5374.
Jones, Barrett W
Taylor, Warren D
and
Walsh, Colin G
2023.
Sequential autoencoders for feature engineering and pretraining in major depressive disorder risk prediction.
JAMIA Open,
Vol. 6,
Issue. 4,
Lennon, Matthew J
and
Harmer, Catherine
2023.
Machine learning prediction will be part of future treatment of depression.
Australian & New Zealand Journal of Psychiatry,
Vol. 57,
Issue. 10,
p.
1316.
Delgadillo, Jaime
and
Atzil-Slonim, Dana
2023.
Encyclopedia of Mental Health.
p.
132.
Eilertsen, Silje Elisabeth Hasmo
and
Eilertsen, Thomas Hasmo
2023.
Why is it so hard to identify (consistent) predictors of treatment outcome in psychotherapy? – clinical and research perspectives.
BMC Psychology,
Vol. 11,
Issue. 1,
Starke, Georg
D’Imperio, Ambra
and
Ienca, Marcello
2023.
Out of their minds? Externalist challenges for using AI in forensic psychiatry.
Frontiers in Psychiatry,
Vol. 14,
Issue. ,
Li, Zuwei
Guo, Minzhang
Lin, Wanli
and
Huang, Peiyuan
2023.
Machine Learning-Based Integration Develops a Macrophage-Related Index for Predicting Prognosis and Immunotherapy Response in Lung Adenocarcinoma.
Archives of Medical Research,
Vol. 54,
Issue. 7,
p.
102897.
Wu, Yafei
Wang, Xing
Gu, Chenming
Zhu, Junmin
and
Fang, Ya
2023.
Investigating predictors of progression from mild cognitive impairment to Alzheimer’s disease based on different time intervals.
Age and Ageing,
Vol. 52,
Issue. 9,
Shusharina, Natalia
Yukhnenko, Denis
Botman, Stepan
Sapunov, Viktor
Savinov, Vladimir
Kamyshov, Gleb
Sayapin, Dmitry
and
Voznyuk, Igor
2023.
Modern Methods of Diagnostics and Treatment of Neurodegenerative Diseases and Depression.
Diagnostics,
Vol. 13,
Issue. 3,
p.
573.
Del Fabro, Lorenzo
Bondi, Elena
Serio, Francesca
Maggioni, Eleonora
D’Agostino, Armando
and
Brambilla, Paolo
2023.
Machine learning methods to predict outcomes of pharmacological treatment in psychosis.
Translational Psychiatry,
Vol. 13,
Issue. 1,
Ye, Wei
Chen, Xicheng
Li, Pengpeng
Tao, Yongjun
Wang, Zhenyan
Gao, Chengcheng
Cheng, Jian
Li, Fang
Yi, Dali
Wei, Zeliang
Yi, Dong
and
Wu, Yazhou
2023.
OEDL: an optimized ensemble deep learning method for the prediction of acute ischemic stroke prognoses using union features.
Frontiers in Neurology,
Vol. 14,
Issue. ,
Fan, Xingman
Li, Yanyan
He, Qiongyi
Wang, Meng
Lan, Xiaohua
Zhang, Kaijie
Ma, Chenyue
and
Zhang, Haitao
2023.
Predictive Value of Machine Learning for Recurrence of Atrial Fibrillation after Catheter Ablation: A Systematic Review and Meta-Analysis.
Reviews in Cardiovascular Medicine,
Vol. 24,
Issue. 11,
Wise, Toby
Robinson, Oliver J.
and
Gillan, Claire M.
2023.
Identifying Transdiagnostic Mechanisms in Mental Health Using Computational Factor Modeling.
Biological Psychiatry,
Vol. 93,
Issue. 8,
p.
690.
Kopitar, Leon
Kokol, Peter
and
Stiglic, Gregor
2023.
Hybrid visualization-based framework for depressive state detection and characterization of atypical patients.
Journal of Biomedical Informatics,
Vol. 147,
Issue. ,
p.
104535.