Article contents
Lithium therapy and thyroid function: a long-term study
Published online by Cambridge University Press: 09 July 2009
Synopsis
Seventy-three patients who had been continuously receiving lithium carbonate for 6 months or more had their thyroid function evaluated clinically and biochemically. Goitre was found in 37 %, exophthalmos in 23 %, positive thyroid auto-antibodies in 24 % and abnormal TRH tests in 49 %. It would appear that thyroid failure due to lithium is usually dependent on antibody mediated damage. It is unlikely that lithium has a direct effect on the hypothalamic–pituitary axis.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1981
References
REFERENCES
Abuzzahab, F. S. & Dahlman, H. C. (1978). Long-term effects of lithium carbonate on serum protein bound iodine in affective disorders. Progress in Neuro-Psychopharmacology 2, 369–377.CrossRefGoogle Scholar
Bagchi, N., Brown, T. R. & Mack, R. E. (1978). Studies on the mechanism of inhibition of thyroid function by lithium. Biochimica et biophysica acta 542, 163–169.CrossRefGoogle ScholarPubMed
Berens, S. C. & Wolff, J. (1975). The endocrine effects of lithium. In Lithium Research and Therapy (ed. Johnson, F. N.), pp. 433–472. Academic Press: London.Google Scholar
Berens, S. C., Wolff, J. & Murphy, D. L. (1970). Lithium concentration by the thyroid. Endocrinology 87, 1085–1087.CrossRefGoogle ScholarPubMed
Beumont, P. J. V., Gelder, M. G., Mandelbrote, B. M., Wiles, D. W., Friesen, H. G., Harris, G. W. & Mackinnon, P. C. B. (1974). The effects of phenothiazines on endocrine function. I. Patients with inappropriate lactation and amenorrhoea. British Journal of Psychiatry 124, 413–419.CrossRefGoogle Scholar
Bhattacharya, B. & Wolff, J. (1976). Stabilization of micro- tubules by lithium ion. Biochemical Biophysical Research Communication 73, 383–390.CrossRefGoogle Scholar
Blomqvist, N., Lindstedt, G., Lundberg, P. A. & Walinder, J. (1977). No inhibition by Li+ of thyroxine monodeiodination to 3,5,3'-triiodothyronine and 3,3',5'-triiodothyronine (reverse triiodothyronine). Clinica chimica acta 79, 457–464.CrossRefGoogle Scholar
Burman, K. D., Dimond, R. C., EarlI, J. M., Wright, F. D. & Wartofsky, L. (1976). Sensitivity to lithium in treated Graves' disease: effects on serum T4, T3 and reverse T3. Journal of Clinical Endocrinology and Metabolism 43, 606–613.CrossRefGoogle ScholarPubMed
Challand, G. S., Ratcliffe, W. A. & Ratcliffe, J. G. (1975). Semi automated radioimmunoassay for total serum thyroxine and triiodothyronine. Clinica chimica acta 60, 25–32.CrossRefGoogle Scholar
Chalmers, R. J. & Bennie, E. H. (1978). The effect of fluphenazine on basal prolactin concentrations. Psychological Medicine 8, 483–486.CrossRefGoogle ScholarPubMed
Child, C., Nolan, G. & Jubiz, W. (1976). Changes in serum thyroxine, triiodothyronine, and thyrotropin induced by lithium in normal subjects and in rats. Clinical Pharmacology and Therapeutics 20, 715–719.CrossRefGoogle ScholarPubMed
Cooper, T. B. & Simpson, G. M. (1969). Preliminary report of a longitudinal study on the effects of lithium on iodine metabolism. Current Therapeutic Research 11, 603–608.Google ScholarPubMed
Crowe, M. J., Lloyd, G. G., Block, S. & Rosser, R. M. (1973). Hypothyroidism in patients treated with lithium: a review and two case reports. Psychological Medicine 3, 337–342.CrossRefGoogle ScholarPubMed
Deniker, P., Eyquem, A., Bernheim, R., Loo, H. & De la Rue, P. (1978). Thyroid autoantibody levels during lithium therapy. Neuropsychobiology 4, 270–275.CrossRefGoogle ScholarPubMed
Emerson, C. H., Dyson, W. L. & Utiger, R. D. (1973). Serum thyrotropin and thyroxine concentrations in patients receiving lithium carbonate. Journal of Clinical Endocrinology and Metabolism 36, 338–346.CrossRefGoogle Scholar
Fernandez, L. A. & Fox, R. A. (1980). Perturbation of the immune system by lithium. Clinical and Experimental Immunology 41, 527–532.Google ScholarPubMed
Geisler, A. & Klysner, R. (1978). Influence of lithium on dopamine stimulated adenylate cyclase activity on rat brain. Life Sciences 23, 635–636.CrossRefGoogle ScholarPubMed
Glass, M. R., Williams, J. W., Butt, W. R., Logan, Edwards R. & London, D. R. (1976). Basal serum prolactin values and responses to the administration of thyrotrophin releasing hormone (TRH) in women with amenorrhoea. British Journal of Obstetrics and Gynaecology 83, 495–501.CrossRefGoogle Scholar
Hesketh, J. E., Nicolaou, N. M., Arbuthnott, G. W. & Wright, A. K. (1978). The effect of chronic lithium administration on dopamine metabolism in rat striatum. Psychopharmacology 56, 163–166.CrossRefGoogle ScholarPubMed
Hullin, R. P. (1978). The place of lithium in biological psychiatry. In Lithium in Medical Practice (ed. Johnson, F. N. and Johnson, S.), pp. 433–454. MTP Press: Lancaster.Google Scholar
Lal, S., Nair, N. P. V. & Guyda, A. (1978). Effect of lithium on hypothalamic–pituitary dopaminergic function. Acta psychiatrica scandanavica 57, 91–96.CrossRefGoogle ScholarPubMed
Lazarus, J. H. & Bennie, E. H. (1972). Effect of lithium on thyroid function in man. Acta endocrinologica 70, 266–272.Google ScholarPubMed
Lazarus, J. H. & Muston, H. L. (1978). The effect of lithium on the iodide concentrating mechanism in mouse salivary gland. Acta pharmacologica et toxicologica 43, 55–58.CrossRefGoogle ScholarPubMed
Leppaluoto, J., Mannisto, P. T. & Virkkunen, P. (1973). On the mechanism of goitre formation during lithium treatment in the rat. Acta endocrinologica 74, 296–306.Google ScholarPubMed
Lindstedt, G., Nilsson, L. A., Walinder, J., Skott, A. & Ohman, R. (1977). On the prevalence, diagnosis and management of lithium induced hypothyroidism in psychiatric patients. British Journal of Psychiatry 130, 452–458.CrossRefGoogle ScholarPubMed
McLarty, D. G., O'Boyle, J. H., Spencer, C. A. & Ratcliffe, J. G. (1975). Effect of lithium on hypothalamic–pituitary-thyroid function in patients with affective disorders. British Medical Journal iii, 623–626.CrossRefGoogle Scholar
McLarty, D. G., Ratcliffe, W. A., Ratcliffe, J. G., Shimmins, J. G. & Goldberg, A. (1978). A study of thyroid function in psychiatric inpatients. British Journal of Psychiatry 133, 211–218.CrossRefGoogle Scholar
Meltzer, H. T., Victor, M. D. & Fang, S. (1976). The effect of neuroleptics on serum prolactin in schizophrenic patients. Archives of General Psychiatry 33, 379–386.CrossRefGoogle ScholarPubMed
Pfeifer, W. D., Davis, L. C. & Van der Velde, C. D. (1976). Lithium accumulation in some endocrine tissues. Acta biologica medica germanica 35, 1519–1523.Google ScholarPubMed
Ratcliffe, W. A., Marshall, J. & Ratcliffe, J. G. (1976). Radioimmunoassay of 3,3-,5-triiodothyronine (reverse T3) in unextracted human serum. Clinical Endocrinology 5, 631–641.CrossRefGoogle ScholarPubMed
Reuter, A. M., Kennes, F., Gevaerti, Y. & Franchimont, P. (1975). Homologous radioimmunoassay for human prolactin. International Journal of Nuclear Medicine and Biology 3,21–28.CrossRefGoogle Scholar
Scanlon, M. F., Weightman, D. R., Shale, D. J., Mora, B., Heath, M., Snow, M. H., Lewis, M. & Hall, R. (1979). Dopamine is a physiological regulator of thyrotrophin (TSH) secretion in normal man. Clinical Endocrinology 10, 7–15.CrossRefGoogle ScholarPubMed
Schorderet, M. (1977). Lithium inhibition of cyclic AMP accumulation induced by dopamine in isolated retinae of the rabbit. Biochemistry and Pharmacology 26, 167–170.CrossRefGoogle ScholarPubMed
Schou, M., Amdisen, A., Jensen, S. E. & Olsen, T. (1968). Occurrence of goitre during lithium treatment. British Medical Journal iii, 710–713.CrossRefGoogle Scholar
Segal, R. L., Rosenblatt, S. & Eliasoph, I. (1973). Endocrine exophthalmos during lithium therapy of manic-depressive disease. New England Journal of Medicine 289, 136–138.CrossRefGoogle ScholarPubMed
Singer, I. & Rotenberg, D. (1973). Mechanisms of lithium action. New England Journal of Medicine 289, 254–260.CrossRefGoogle ScholarPubMed
Spaulding, S. W., Burrow, G. N., Ramey, J. N. & Donabedian, R. K. (1976). Effect of increased iodide intake on thyroid function in subjects on chronic lithium therapy. Acta endocrinologica 84, 290–296.Google Scholar
Stefanini, E., Argiolas, A., Gessa, G. L. & Fadda, F. (1976). Effect of lithium on dopamine uptake by brain synaptosomes. Journal of Neurochemistry 26, 443–445.Google Scholar
Transbøl, I., Christiansen, C. & Baastrup, P. C. (1978). Endocrine effects of lithium. I. Acta endocrinologica 87, 759–767.Google ScholarPubMed
Tunbridge, W. M. G., Evered, D. C., Hall, R., Appleton, D., Brewis, M., Clark, F., Grimley, Evans J., Young, E., Bird, T. & Smith, P. A. (1977). The spectrum of thyroid disease in a community: The Wickham survey. Clinical Endocrinology 7, 481–493.CrossRefGoogle Scholar
Voss, C., Schober, H. C. & Hartmann, N. (1977). Einfluss von Lithium auf die in vitro Dejodierung von L-Thyroxin in der Rattenleber. Acta biologica et medica germanica 36, 1061–1065.Google Scholar
Wasilewski, von B., Steinbock, H., Kohl, R., Greil, W. & Botterman, P. (1978). Thyroid function in prophylactic therapy with lithium. Arzneimittel-Forschung/Drug Research 28 (8), 1297–1298.Google ScholarPubMed
Wiles, D. H., Kolakowska, T., McNeilly, A. S., Mandelbrote, B. M. & Gelder, M. G. (1976). Clinical significance of plasma chlorpromazine levels. 1. Plasma levels of the drug, some of its metabolites and prolactin during acute treatment. Psychological Medicine 6, 407–415.CrossRefGoogle ScholarPubMed
- 85
- Cited by