Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T22:19:24.788Z Has data issue: false hasContentIssue false

Intensity of repetitive negative thinking in depression is associated with greater functional connectivity between semantic processing and emotion regulation areas

Published online by Cambridge University Press:  31 August 2022

Aki Tsuchiyagaito*
Affiliation:
Laureate Institute for Brain Research, Tulsa, OK, USA The University of Tulsa, Tulsa, OK, USA Chiba University, Chiba, Japan
Stella M. Sánchez
Affiliation:
Laureate Institute for Brain Research, Tulsa, OK, USA
Masaya Misaki
Affiliation:
Laureate Institute for Brain Research, Tulsa, OK, USA
Rayus Kuplicki
Affiliation:
Laureate Institute for Brain Research, Tulsa, OK, USA
Heekyong Park
Affiliation:
Laureate Institute for Brain Research, Tulsa, OK, USA University of North Texas at Dallas, Dallas, TX, USA
Martin P. Paulus
Affiliation:
Laureate Institute for Brain Research, Tulsa, OK, USA
Salvador M. Guinjoan
Affiliation:
Laureate Institute for Brain Research, Tulsa, OK, USA
*
Author for correspondence: Aki Tsuchiyagaito, E-mail: [email protected]

Abstract

Background

Repetitive negative thinking (RNT), a cognitive process that encompasses past (rumination) and future (worry) directed thoughts focusing on negative experiences and the self, is a transdiagnostic construct that is especially relevant for major depressive disorder (MDD). Severe RNT often occurs in individuals with severe levels of MDD, which makes it challenging to disambiguate the neural circuitry underlying RNT from depression severity.

Methods

We used a propensity score, i.e., a conditional probability of having high RNT given observed covariates to match high and low RNT individuals who are similar in the severity of depression, anxiety, and demographic characteristics. Of 148 MDD individuals, we matched high and low RNT groups (n = 50/group) and used a data-driven whole-brain voxel-to-voxel connectivity pattern analysis to investigate the resting-state functional connectivity differences between the groups.

Results

There was an association between RNT and connectivity in the bilateral superior temporal sulcus (STS), an important region for speech processing including inner speech. High relative to low RNT individuals showed greater connectivity between right STS and bilateral anterior insular cortex (AI), and between bilateral STS and left dorsolateral prefrontal cortex (DLPFC). Greater connectivity in those regions was specifically related to RNT but not to depression severity.

Conclusions

RNT intensity is directly related to connectivity between STS and AI/DLPFC. This might be a mechanism underlying the role of RNT in perceptive, cognitive, speech, and emotional processing. Future investigations will need to determine whether modifying these connectivities could be a treatment target to reduce RNT.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, T., Kato, M., Muramatsu, T., Saito, F., Nakachi, R., & Kashima, H. (2006a). A deficit in discriminating gaze direction in a case with right superior temporal gyrus lesion. Neuropsychologia, 44(2), 161170. doi: 10.1016/j.neuropsychologia.2005.05.018CrossRefGoogle Scholar
Akiyama, T., Kato, M., Muramatsu, T., Saito, F., Umeda, S., & Kashima, H. (2006b). Gaze but not arrows: A dissociative impairment after right superior temporal gyrus damage. Neuropsychologia, 44(10), 18041810. doi: 10.1016/j.neuropsychologia.2006.03.007CrossRefGoogle ScholarPubMed
Alderson-Day, B., & Fernyhough, C. (2015a). Inner speech: Development, cognitive functions, phenomenology, and neurobiology. Psychological Bulletin, 141(5), 931965. doi: 10.1037/bul0000021CrossRefGoogle ScholarPubMed
Alderson-Day, B., & Fernyhough, C. (2015b). Relations among questionnaire and experience sampling measures of inner speech: A smartphone app study. Frontiers in Psychology, 6, 517. doi: 10.3389/fpsyg.2015.00517CrossRefGoogle ScholarPubMed
Alderson-Day, B., McCarthy-Jones, S., Bedford, S., Collins, H., Dunne, H., Rooke, C., & Fernyhough, C. (2014). Shot through with voices: Dissociation mediates the relationship between varieties of inner speech and auditory hallucination proneness. Consciousness and Cognition, 27, 288296. doi: 10.1016/j.concog.2014.05.010CrossRefGoogle ScholarPubMed
Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim, K. O., & Gunning, F. M. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression. Journal of Affective Disorders, 139(1), 5665. doi: 10.1016/j.jad.2011.12.002CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain's default network. Neuron, 65(4), 550562. doi: 10.1016/j.neuron.2010.02.005CrossRefGoogle ScholarPubMed
Anteraper, S. A., Collin, G., Guell, X., Scheinert, T., Molokotos, E., Henriksen, M. T., … Whitfield-Gabrieli, S. (2020). Altered resting-state functional connectivity in young children at familial high risk for psychotic illness: A preliminary study. Schizophrenia Research, 216, 496503. doi: 10.1016/j.schres.2019.09.006CrossRefGoogle ScholarPubMed
Anteraper, S. A., Guell, X., D'Mello, A., Joshi, N., Whitfield-Gabrieli, S., & Joshi, G. (2019). Disrupted cerebrocerebellar intrinsic functional connectivity in young adults with high-functioning autism Spectrum disorder: A data-driven, whole-brain, high-temporal resolution functional magnetic resonance imaging study. Brain Connectivity, 9(1), 4859. doi: 10.1089/brain.2018.0581CrossRefGoogle Scholar
Armey, M. F., Fresco, D. M., Moore, M. T., Mennin, D. S., Turk, C. L., Heimberg, R. G., … Alloy, L. B. (2009). Brooding and pondering: Isolating the active ingredients of depressive rumination with exploratory factor analysis and structural equation modeling. Assessment, 16(4), 315327. doi: 10.1177/1073191109340388CrossRefGoogle ScholarPubMed
Avery, J. A., Drevets, W. C., Moseman, S. E., Bodurka, J., Barcalow, J. C., & Simmons, W. K. (2014). Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biological Psychiatry, 76(3), 258266. doi: 10.1016/j.biopsych.2013.11.027CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science (New York, N.Y.), 275(5304), 12931295. doi: 10.1126/science.275.5304.1293CrossRefGoogle ScholarPubMed
Benedetto, U., Head, S. J., Angelini, G. D., & Blackstone, E. H. (2018). Statistical primer: Propensity score matching and its alternatives. European Journal of Cardiothoracic Surgery, 53(6), 11121117. doi: 10.1093/ejcts/ezy167CrossRefGoogle ScholarPubMed
Berman, M. G., Misic, B., Buschkuehl, M., Kross, E., Deldin, P. J., Peltier, S., … Jonides, J. (2014). Does resting-state connectivity reflect depressive rumination? A tale of two analyses. Neuroimage, 103, 267279. doi: 10.1016/j.neuroimage.2014.09.027CrossRefGoogle ScholarPubMed
Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267277. doi: 10.1038/nrn2353CrossRefGoogle ScholarPubMed
Bonaz, B., Lane, R. D., Oshinsky, M. L., Kenny, P. J., Sinha, R., Mayer, E. A., & Critchley, H. D. (2021). Diseases, disorders, and comorbidities of interoception. Trends in Neurosciences, 44(1), 3951. doi: 10.1016/j.tins.2020.09.009CrossRefGoogle ScholarPubMed
Burwell, R. A., & Shirk, S. R. (2007). Subtypes of rumination in adolescence: Associations between brooding, reflection, depressive symptoms, and coping. Journal of Clinical Child and Adolescent Psychology, 36(1), 5665. doi: 10.1080/15374410709336568CrossRefGoogle ScholarPubMed
Byun, J. I., Cha, K. S., Kim, M., Lee, W. J., Lee, H. S., Sunwoo, J. S., … Jung, K. Y. (2021). Altered insular functional connectivity in isolated REM sleep behavior disorder: A data-driven functional MRI study. Sleep Medicine, 79, 8893. doi: 10.1016/j.sleep.2020.12.038CrossRefGoogle ScholarPubMed
Cain, R. A. (2007). Navigating the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study: Practical outcomes and implications for depression treatment in primary care. Primary Care: Clinics in Office Practice, 34(3), 505519, vi. doi: 10.1016/j.pop.2007.05.006CrossRefGoogle ScholarPubMed
Carrington, S. J., & Bailey, A. J. (2009). Are there theory of mind regions in the brain? A review of the neuroimaging literature. Human Brain Mapping, 30(8), 23132335. doi: 10.1002/hbm.20671CrossRefGoogle Scholar
Chen, Y., Wang, C., Zhu, X., Tan, Y., & Zhong, Y. (2015). Aberrant connectivity within the default mode network in first-episode, treatment-naive major depressive disorder. Journal of Affective Disorders, 183, 4956. doi: 10.1016/j.jad.2015.04.052CrossRefGoogle ScholarPubMed
Cho, J. W., Korchmaros, A., Vogelstein, J. T., Milham, M. P., & Xu, T. (2021). Impact of concatenating fMRI data on reliability for functional connectomics. Neuroimage, 226, 117549. doi: 10.1016/j.neuroimage.2020.117549CrossRefGoogle ScholarPubMed
Chumbley, J., Worsley, K., Flandin, G., & Friston, K. (2010). Topological FDR for neuroimaging. Neuroimage, 49(4), 30573064. doi: 10.1016/j.neuroimage.2009.10.090CrossRefGoogle ScholarPubMed
Clark, D. M., Salkovskis, P. M., Ost, L. G., Breitholtz, E., Koehler, K. A., Westling, B. E., … Gelder, M. (1997). Misinterpretation of body sensations in panic disorder. Journal of Consulting and Clinical Psychology, 65(2), 203213. doi: 10.1037//0022-006x.65.2.203CrossRefGoogle ScholarPubMed
Connolly, C. G., Wu, J., Ho, T. C., Hoeft, F., Wolkowitz, O., Eisendrath, S., … Yang, T. T. (2013). Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biological Psychiatry, 74(12), 898907. doi: 10.1016/j.biopsych.2013.05.036CrossRefGoogle ScholarPubMed
Cooney, R. E., Joormann, J., Eugene, F., Dennis, E. L., & Gotlib, I. H. (2010). Neural correlates of rumination in depression. Cognitive, Affective & Behavioral Neuroscience, 10(4), 470478. doi: 10.3758/CABN.10.4.470CrossRefGoogle ScholarPubMed
Craig, A. D. (2009). How do you feel--now? The anterior insula and human awareness. Nature Reviews: Neuroscience, 10(1), 5970. doi: 10.1038/nrn2555CrossRefGoogle Scholar
Critchley, H. D., Melmed, R. N., Featherstone, E., Mathias, C. J., & Dolan, R. J. (2002). Volitional control of autonomic arousal: A functional magnetic resonance study. Neuroimage, 16(4), 909919. doi: 10.1006/nimg.2002.1147CrossRefGoogle ScholarPubMed
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189195. doi: 10.1038/nn1176CrossRefGoogle ScholarPubMed
Deen, B., Koldewyn, K., Kanwisher, N., & Saxe, R. (2015). Functional organization of social perception and cognition in the superior temporal sulcus. Cerebral Cortex, 25(11), 45964609. doi: 10.1093/cercor/bhv111CrossRefGoogle ScholarPubMed
Dodell-Feder, D., Koster-Hale, J., Bedny, M., & Saxe, R. (2011). fMRI item analysis in a theory of mind task. Neuroimage, 55(2), 705712. doi: 10.1016/j.neuroimage.2010.12.040CrossRefGoogle Scholar
Drabant, E. M., Kuo, J. R., Ramel, W., Blechert, J., Edge, M. D., Cooper, J. R., … Gross, J. J. (2011). Experiential, autonomic, and neural responses during threat anticipation vary as a function of threat intensity and neuroticism. Neuroimage, 55(1), 401410. doi: 10.1016/j.neuroimage.2010.11.040CrossRefGoogle ScholarPubMed
Evans, J. W., Szczepanik, J., Brutsche, N., Park, L. T., Nugent, A. C., & Zarate, C. A. Jr. (2018). Default mode connectivity in major depressive disorder measured up to 10 days after ketamine administration. Biological Psychiatry, 84(8), 582590. doi: 10.1016/j.biopsych.2018.01.027CrossRefGoogle ScholarPubMed
Farb, N., Daubenmier, J., Price, C. J., Gard, T., Kerr, C., Dunn, B. D., … Mehling, W. E. (2015). Interoception, contemplative practice, and health. Frontiers in Psychology, 6, 763. doi: 10.3389/fpsyg.2015.00763CrossRefGoogle ScholarPubMed
Garcia-Cordero, I., Sedeno, L., de la Fuente, L., Slachevsky, A., Forno, G., Klein, F., … Ibanez, A. (2016). Feeling, learning from and being aware of inner states: Interoceptive dimensions in neurodegeneration and stroke. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 371(1708), 20160006. doi: 10.1098/rstb.2016.0006.CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Critchley, H. D. (2013). Interoception, emotion and brain: New insights link internal physiology to social behaviour. Commentary on: “anterior insular cortex mediates bodily sensibility and social anxiety” by Terasawa et al. (2012). Social Cognitive and Affective Neuroscience, 8(3), 231234. doi: 10.1093/scan/nss140CrossRefGoogle ScholarPubMed
Gilmartin, M. R., Balderston, N. L., & Helmstetter, F. J. (2014). Prefrontal cortical regulation of fear learning. Trends in Neurosciences, 37(8), 455464. doi: 10.1016/j.tins.2014.05.004CrossRefGoogle ScholarPubMed
Gobbini, M. I., Koralek, A. C., Bryan, R. E., Montgomery, K. J., & Haxby, J. V. (2007). Two takes on the social brain: A comparison of theory of mind tasks. Journal of Cognitive Neuroscience, 19(11), 18031814. doi: 10.1162/jocn.2007.19.11.1803CrossRefGoogle Scholar
Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577586. doi: 10.1016/j.biopsych.2007.05.031CrossRefGoogle ScholarPubMed
Goldschmidt, M. G., Villarreal, M. F., de Achaval, D., Drucaroff, L. J., Costanzo, E. Y., Castro, M. N., … Guinjoan, S. M. (2014). Cluster B personality symptoms in persons at genetic risk for schizophrenia are associated with social competence and activation of the right temporo-parietal junction during emotion processing. Psychiatry Research, 221(1), 3036. doi: 10.1016/j.pscychresns.2013.10.008CrossRefGoogle ScholarPubMed
Guell, X., Arnold Anteraper, S., Gardner, A. J., Whitfield-Gabrieli, S., Kay-Lambkin, F., Iverson, G. L., … Stanwell, P. (2020). Functional connectivity changes in retired rugby league players: A data-driven functional magnetic resonance imaging study. Journal of Neurotrauma, 37(16), 17881796. doi: 10.1089/neu.2019.6782CrossRefGoogle ScholarPubMed
Guinjoan, S. M., de Achaval, D., Villarreal, M. F., Abusamra, V., & Nemeroff, C. B. (2015). From semantic to social deficits: Dysfunction of the nondominant posterior perisylvian area in schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 27(4), 254261. doi: 10.1176/appi.neuropsych.14120377CrossRefGoogle ScholarPubMed
Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biological Psychiatry, 78(4), 224230. doi: 10.1016/j.biopsych.2015.02.020CrossRefGoogle ScholarPubMed
Hamilton, J. P., Furman, D. J., Chang, C., Thomason, M. E., Dennis, E., & Gotlib, I. H. (2011). Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination. Biological Psychiatry, 70(4), 327333. doi: 10.1016/j.biopsych.2011.02.003CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry, 23, 5662. doi: 10.1136/jnnp.23.1.56CrossRefGoogle ScholarPubMed
Harvey, A. G., Watkins, E., Mansell, W., & Shafran, R. (2004). Cognitive behavioural processes across psychological disorders: A transdiagnostic approach to research and treatment. Oxford, United Kingdom: Oxford University Press.CrossRefGoogle Scholar
Hein, G., & Knight, R. T. (2008). Superior temporal sulcus – it's my area: Or is it? Journal of Cognitive Neuroscience, 20(12), 21252136. doi: 10.1162/jocn.2008.20148CrossRefGoogle Scholar
Ho, D., Imai, K., King, G., & Stuart, E. A. (2011). MatchIt: Nonparametric preprocessing for parametric causal inference. Journal of Statistical Software, 42(8), 128.CrossRefGoogle Scholar
Jacobs, R. H., Watkins, E. R., Peters, A. T., Feldhaus, C. G., Barba, A., Carbray, J., & Langenecker, S. A. (2016). Targeting ruminative thinking in adolescents at risk for depressive relapse: Rumination-focused cognitive behavior therapy in a pilot randomized controlled trial with resting-state fMRI. PloS One, 11(11), e0163952. doi: 10.1371/journal.pone.0163952CrossRefGoogle Scholar
Jones, N. P., Siegle, G. J., & Thase, M. E. (2008). Effects of rumination and initial severity on remission to cognitive therapy for depression. Cognitive Therapy and Research, 32(4), 591604. doi: 10.1007/s10608-008-9191-0.CrossRefGoogle ScholarPubMed
Jones, S. R., & Fernyhough, C. (2009). Rumination, reflection, intrusive thoughts, and hallucination-proneness: Towards a new model. Behaviour Research and Therapy, 47(1), 5459. doi: 10.1016/j.brat.2008.09.008CrossRefGoogle ScholarPubMed
Kazumata, K., Tha, K. K., Uchino, H., Ito, M., Nakayama, N., & Abumiya, T. (2017). Mapping altered brain connectivity and its clinical associations in adult moyamoya disease: A resting-state functional MRI study. PloS One, 12(8), e0182759. doi: 10.1371/journal.pone.0182759CrossRefGoogle ScholarPubMed
Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16(11), 559572. doi: 10.1016/j.tics.2012.09.006CrossRefGoogle ScholarPubMed
Khalsa, S. S., Adolphs, R., Cameron, O. G., Critchley, H. D., Davenport, P. W., & Feinstein, J. S., … Interoception Summit, P. (2018). Interoception and mental health: A roadmap. Biological Psychiatry, 3(6), 501513. doi: 10.1016/j.bpsc.2017.12.004Google ScholarPubMed
Krajniak, M., Miranda, R., & Wheeler, A. (2013). Rumination and pessimistic certainty as mediators of the relation between lifetime suicide attempt history and future suicidal ideation. Archives of Suicide Research, 17(3), 196211. doi: 10.1080/13811118.2013.805638CrossRefGoogle ScholarPubMed
Kret, M. E., Pichon, S., Grezes, J., & de Gelder, B. (2011). Similarities and differences in perceiving threat from dynamic faces and bodies. An fMRI study. Neuroimage, 54(2), 17551762. doi: 10.1016/j.neuroimage.2010.08.012CrossRefGoogle ScholarPubMed
Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613. doi: 10.1046/j.1525-1497.2001.016009606.xCrossRefGoogle ScholarPubMed
Kumar, S., Stephan, K. E., Warren, J. D., Friston, K. J., & Griffiths, T. D. (2007). Hierarchical processing of auditory objects in humans. PLoS Computational Biology, 3(6), e100. doi: 10.1371/journal.pcbi.0030100CrossRefGoogle ScholarPubMed
Kuplicki, R., Touthang, J., Al Zoubi, O., Mayeli, A., Misaki, M., Neuro, M. A. P. I., … Bodurka, J. (2021). Common data elements, scalable data management infrastructure, and analytics workflows for large-scale neuroimaging studies. Frontiers in Psychiatry, 12, 682495. doi: 10.3389/fpsyt.2021.682495CrossRefGoogle ScholarPubMed
Lahnakoski, J. M., Glerean, E., Salmi, J., Jaaskelainen, I. P., Sams, M., Hari, R., & Nummenmaa, L. (2012). Naturalistic FMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception. Frontiers in Human Neuroscience, 6, 233. doi: 10.3389/fnhum.2012.00233CrossRefGoogle Scholar
Li, B., Liu, L., Friston, K. J., Shen, H., Wang, L., Zeng, L. L., & Hu, D. (2013). A treatment-resistant default mode subnetwork in major depression. Biological Psychiatry, 74(1), 4854. doi: 10.1016/j.biopsych.2012.11.007CrossRefGoogle ScholarPubMed
Liebenthal, E., Desai, R. H., Humphries, C., Sabri, M., & Desai, A. (2014). The functional organization of the left STS: A large-scale meta-analysis of PET and fMRI studies of healthy adults. Frontiers in Neuroscience, 8, 289. doi: 10.3389/fnins.2014.00289CrossRefGoogle ScholarPubMed
Linden, D. E., Thornton, K., Kuswanto, C. N., Johnston, S. J., van de Ven, V., & Jackson, M. C. (2011). The brain's voices: Comparing nonclinical auditory hallucinations and imagery. Cerebral Cortex, 21(2), 330337. doi: 10.1093/cercor/bhq097CrossRefGoogle ScholarPubMed
Liston, C., Chen, A. C., Zebley, B. D., Drysdale, A. T., Gordon, R., Leuchter, B., … Dubin, M. J. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76(7), 517526. doi: 10.1016/j.biopsych.2014.01.023CrossRefGoogle ScholarPubMed
Long, Z., Du, L., Zhao, J., Wu, S., Zheng, Q., & Lei, X. (2020). Prediction on treatment improvement in depression with resting state connectivity: A coordinate-based meta-analysis. Journal of Affective Disorders, 276, 6268. doi: 10.1016/j.jad.2020.06.072CrossRefGoogle ScholarPubMed
Matthews, G., & Wells, A. (2004). Rumination, depression, and metacognition: The S-REF model. In Papageorgiou, C. & Well, A. (Eds.), Depressive rumination: Nature, theory and treatment (pp. 125151). Hoboken, New Jersey: Wiley.Google Scholar
McLaughlin, K. A., & Nolen-Hoeksema, S. (2011). Rumination as a transdiagnostic factor in depression and anxiety. Behaviour Research and Therapy, 49(3), 186193. doi: 10.1016/j.brat.2010.12.006CrossRefGoogle ScholarPubMed
Misaki, M., Tsuchiyagaito, A., Al Zoubi, O., Paulus, M., & Bodurka, J., & Tulsa 1000, I. (2020). Connectome-wide search for functional connectivity locus associated with pathological rumination as a target for real-time fMRI neurofeedback intervention. Neuroimage: Clinical, 26, 102244. doi: 10.1016/j.nicl.2020.102244CrossRefGoogle ScholarPubMed
Moffatt, J., Mitrenga, K. J., Alderson-Day, B., Moseley, P., & Fernyhough, C. (2020). Inner experience differs in rumination and distraction without a change in electromyographical correlates of inner speech. PloS One, 15(9), e0238920. doi: 10.1371/journal.pone.0238920CrossRefGoogle ScholarPubMed
Morris, T. P., Chaddock-Heyman, L., Ai, M., Anteraper, S. A., Castanon, A. N., Whitfield-Gabrieli, S., … Kramer, A. F. (2021). Enriching activities during childhood are associated with variations in functional connectivity patterns later in life. Neurobiology of Aging, 104, 92101. doi: 10.1016/j.neurobiolaging.2021.04.002CrossRefGoogle ScholarPubMed
Muehlhan, M., Alexander, N., Trautmann, S., Weckesser, L. J., Vogel, S., Kirschbaum, C., & Miller, R. (2020). Cortisol secretion predicts functional macro-scale connectivity of the visual cortex: A data-driven Multivoxel Pattern Analysis (MVPA). Psychoneuroendocrinology, 117, 104695. doi: 10.1016/j.psyneuen.2020.104695CrossRefGoogle ScholarPubMed
Newby, J. M., & Moulds, M. L. (2012). A comparison of the content, themes, and features of intrusive memories and rumination in major depressive disorder. British Journal of Clinical Psychology, 51(2), 197205. doi: 10.1111/j.2044-8260.2011.02020.xCrossRefGoogle ScholarPubMed
Nierenberg, A. A., Husain, M. M., Trivedi, M. H., Fava, M., Warden, D., Wisniewski, S. R., … Rush, A. J. (2010). Residual symptoms after remission of major depressive disorder with citalopram and risk of relapse: A STAR*D report. Psychological Medicine, 40(1), 4150. doi: 10.1017/S0033291709006011CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S. (2000). The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. Journal of Abnormal Psychology, 109(3), 504511. doi: 10.1037/0021-843X.109.3.504CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S., & Morrow, J. (1991). A prospective study of depression and posttraumatic stress symptoms after a natural disaster: The 1989 Loma Prieta Earthquake. Journal of Personality and Social Psychology, 61(1), 115121. doi: 10.1037//0022-3514.61.1.115CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5), 400424. doi: 10.1111/j.1745-6924.2008.00088.xCrossRefGoogle ScholarPubMed
Noppeney, U., Josephs, O., Hocking, J., Price, C. J., & Friston, K. J. (2008). The effect of prior visual information on recognition of speech and sounds. Cerebral Cortex, 18(3), 598609. doi: 10.1093/cercor/bhm091CrossRefGoogle ScholarPubMed
Norman, S. B., Cissell, S. H., Means-Christensen, A. J., & Stein, M. B. (2006). Development and validation of an Overall Anxiety Severity and Impairment Scale (OASIS). Depression and Anxiety, 23(4), 245249. doi: 10.1002/da.20182CrossRefGoogle ScholarPubMed
Oliver, J., Smith, P., & Leigh, E. (2015). ‘All these negative thoughts come flooding in’: How young people with depression describe their experience of rumination. Cognitive Behaviour Therapy, 8, e15.CrossRefGoogle Scholar
Pang, Y., Wei, Q., Zhao, S., Li, N., Li, Z., Lu, F., … Wang, J. (2022). Enhanced default mode network functional connectivity links with electroconvulsive therapy response in major depressive disorder. Journal of Affective Disorders, 306, 4754. doi: 10.1016/j.jad.2022.03.035CrossRefGoogle ScholarPubMed
Paulus, M. P., & Stein, M. B. (2010). Interoception in anxiety and depression. Brain Structure & Function, 214(5-6), 451463. doi: 10.1007/s00429-010-0258-9CrossRefGoogle ScholarPubMed
Perrone-Bertolotti, M., Rapin, L., Lachaux, J. P., Baciu, M., & Loevenbruck, H. (2014). What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behavioural Brain Research, 261, 220239. doi: 10.1016/j.bbr.2013.12.034CrossRefGoogle ScholarPubMed
Philip, N. S., Barredo, J., van 't Wout-Frank, M., Tyrka, A. R., Price, L. H., & Carpenter, L. L. (2018). Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder. Biological Psychiatry, 83(3), 263272. doi: 10.1016/j.biopsych.2017.07.021CrossRefGoogle ScholarPubMed
Pichon, S., de Gelder, B., & Grezes, J. (2009). Two different faces of threat. Comparing the neural systems for recognizing fear and anger in dynamic body expressions. Neuroimage, 47(4), 18731883. doi: 10.1016/j.neuroimage.2009.03.084CrossRefGoogle ScholarPubMed
Posner, J., Hellerstein, D. J., Gat, I., Mechling, A., Klahr, K., Wang, Z., … Peterson, B. S. (2013). Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry, 70(4), 373382. doi: 10.1001/jamapsychiatry.2013.455CrossRefGoogle ScholarPubMed
Rosenbaum, P. R. (2015). Observational studies: Overview. In Wright, J. D. (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed, pp. 107112). Oxford: Elsevier Ltd.CrossRefGoogle Scholar
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 4155.CrossRefGoogle Scholar
Salk, R. H., Hyde, J. S., & Abramson, L. Y. (2017). Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychological Bulletin, 143(8), 783822. doi: 10.1037/bul0000102CrossRefGoogle ScholarPubMed
Samson, D., Apperly, I. A., Chiavarino, C., & Humphreys, G. W. (2004). Left temporoparietal junction is necessary for representing someone else's belief. Nature Neuroscience, 7(5), 499500. doi: 10.1038/nn1223CrossRefGoogle ScholarPubMed
Schmaling, K. B., Dimidjian, S., Katon, W., & Sullivan, M. (2002). Response styles among patients with minor depression and dysthymia in primary care. Journal of Abnormal Psychology, 111(2), 350356. doi: 10.1037//0021-843x.111.2.350CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(20), 2233.Google ScholarPubMed
Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 1102011025. doi: 10.1073/pnas.1000446107CrossRefGoogle ScholarPubMed
Shergill, S. S., Bullmore, E. T., Brammer, M. J., Williams, S. C., Murray, R. M., & McGuire, P. K. (2001). A functional study of auditory verbal imagery. Psychological Medicine, 31(2), 241253. doi: 10.1017/s003329170100335xCrossRefGoogle ScholarPubMed
Sripada, R. K., King, A. P., Welsh, R. C., Garfinkel, S. N., Wang, X., Sripada, C. S., & Liberzon, I. (2012). Neural dysregulation in posttraumatic stress disorder: Evidence for disrupted equilibrium between salience and default mode brain networks. Psychosomatic Medicine, 74(9), 904911. doi: 10.1097/PSY.0b013e318273bf33CrossRefGoogle ScholarPubMed
Stern, E. R., Grimaldi, S. J., Muratore, A., Murrough, J., Leibu, E., Fleysher, L., … Burdick, K. E. (2017). Neural correlates of interoception: Effects of interoceptive focus and relationship to dimensional measures of body awareness. Human Brain Mapping, 38(12), 60686082. doi: 10.1002/hbm.23811CrossRefGoogle ScholarPubMed
Straub, J., Metzger, C. D., Plener, P. L., Koelch, M. G., Groen, G., & Abler, B. (2017). Successful group psychotherapy of depression in adolescents alters fronto-limbic resting-state connectivity. Journal of Affective Disorders, 209, 135139. doi: 10.1016/j.jad.2016.11.024CrossRefGoogle ScholarPubMed
Surrence, K., Miranda, R., Marroquin, B. M., & Chan, S. (2009). Brooding and reflective rumination among suicide attempters: Cognitive vulnerability to suicidal ideation. Behaviour Research and Therapy, 47(9), 803808. doi: 10.1016/j.brat.2009.06.001CrossRefGoogle ScholarPubMed
Takamiya, A., Kishimoto, T., Hirano, J., Nishikata, S., Sawada, K., Kurokawa, S., … Mimura, M. (2021). Neuronal network mechanisms associated with depressive symptom improvement following electroconvulsive therapy. Psychological Medicine, 51(16), 28562863. doi: 10.1017/S0033291720001518.CrossRefGoogle ScholarPubMed
Tozzi, L., Zhang, X., Chesnut, M., Holt-Gosselin, B., Ramirez, C. A., & Williams, L. M. (2021). Reduced functional connectivity of default mode network subsystems in depression: Meta-analytic evidence and relationship with trait rumination. Neuroimage: Clinical, 30, 102570. doi: 10.1016/j.nicl.2021.102570CrossRefGoogle ScholarPubMed
Treynor, W., Gonzalez, R., & Nolen-Hoeksema, S. (2003). Rumination reconsidered: A psychometric analysis. Cognitive Therapy and Research, 27, 247259. doi: 10.1023/A:1023910315561CrossRefGoogle Scholar
Veer, I. M., Beckmann, C. F., van Tol, M. J., Ferrarini, L., Milles, J., Veltman, D. J., … Rombouts, S. A. (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Frontiers in Systems Neuroscience, 4, 41. doi: 10.3389/fnsys.2010.00041.CrossRefGoogle ScholarPubMed
Wang, Y., Bernanke, J., Peterson, B. S., McGrath, P., Stewart, J., Chen, Y., … Posner, J. (2019). The association between antidepressant treatment and brain connectivity in two double-blind, placebo-controlled clinical trials: A treatment mechanism study. The Lancet. Psychiatry, 6(8), 667674. doi: 10.1016/S2215-0366(19)30179-8CrossRefGoogle ScholarPubMed
Watkins, E. R. (2009). Depressive rumination and co-morbidity: Evidence for brooding as a transdiagnostic process. Journal of Rational-Emotive and Cognitive-Behavior Therapy, 27(3), 160175. doi: 10.1007/s10942-009-0098-9CrossRefGoogle ScholarPubMed
Watkins, E. R., & Roberts, H. (2020). Reflecting on rumination: Consequences, causes, mechanisms and treatment of rumination. Behaviour Research and Therapy, 127, 103573. doi: 10.1016/j.brat.2020.103573CrossRefGoogle ScholarPubMed
Watson, R., Latinus, M., Charest, I., Crabbe, F., & Belin, P. (2014). People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus. Cortex, 50, 125136. doi: 10.1016/j.cortex.2013.07.011CrossRefGoogle ScholarPubMed
Wells, A., & Papageorgiou, C. (2001). Social phobic interoception: Effects of bodily information on anxiety, beliefs and self-processing. Behaviour Research and Therapy, 39(1), 111. doi: 10.1016/s0005-7967(99)00146-1CrossRefGoogle ScholarPubMed
Westfall, D. R., Anteraper, S. A., Chaddock-Heyman, L., Drollette, E. S., Raine, L. B., Whitfield-Gabrieli, S., … Hillman, C. H. (2020). Resting-State functional connectivity and scholastic performance in preadolescent children: A data-driven Multivoxel Pattern Analysis (MVPA). Journal of Clinical Medicine, 9(10), 3198. doi: 10.3390/jcm9103198.CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., Ghosh, S. S., Nieto-Castanon, A., Saygin, Z., Doehrmann, O., Chai, X. J., … Gabrieli, J. D. (2016). Brain connectomics predict response to treatment in social anxiety disorder. Molecular Psychiatry, 21(5), 680685. doi: 10.1038/mp.2015.109CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125141. doi: 10.1089/brain.2012.0073CrossRefGoogle Scholar
Yan, C. G., Chen, X., Li, L., Castellanos, F. X., Bai, T. J., Bo, Q. J., … Zang, Y. F. (2019). Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proceedings of the National Academy of Sciences of the United States of America, 116(18), 90789083. doi: 10.1073/pnas.1900390116CrossRefGoogle ScholarPubMed
Yao, B., Belin, P., & Scheepers, C. (2011). Silent reading of direct versus indirect speech activates voice-selective areas in the auditory cortex. Journal of Cognitive Neuroscience, 23(10), 31463152. doi: 10.1162/jocn_a_00022CrossRefGoogle ScholarPubMed
Yao, B., Belin, P., & Scheepers, C. (2012). Brain ‘talks over’ boring quotes: Top-down activation of voice-selective areas while listening to monotonous direct speech quotations. Neuroimage, 60(3), 18321842. doi: 10.1016/j.neuroimage.2012.01.111CrossRefGoogle ScholarPubMed
Zhou, H. X., Chen, X., Shen, Y. Q., Li, L., Chen, N. X., Zhu, Z. C., … Yan, C. G. (2020). Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. Neuroimage, 206, 116287. doi: 10.1016/j.neuroimage.2019.116287CrossRefGoogle ScholarPubMed
Zhu, X., Zhu, Q., Shen, H., Liao, W., & Yuan, F. (2017). Rumination and default mode network subsystems connectivity in first-episode, drug-naive young patients with major depressive disorder. Scientific Reports, 7, 43105. doi: 10.1038/srep43105CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Tsuchiyagaito et al. supplementary material

Tsuchiyagaito et al. supplementary material

Download Tsuchiyagaito et al. supplementary material(PDF)
PDF 2.8 MB