Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T23:08:58.312Z Has data issue: false hasContentIssue false

A further exploration of the relationships between immune parameters and the HPA-axis activity in depressed patients

Published online by Cambridge University Press:  09 July 2009

M. Maes*
Affiliation:
Psychiatric Centre, Munsterbilzen; Dr Willems Institute, University Campus of Diepenbeek, Belgium
E. Bosmans
Affiliation:
Psychiatric Centre, Munsterbilzen; Dr Willems Institute, University Campus of Diepenbeek, Belgium
E. Suy
Affiliation:
Psychiatric Centre, Munsterbilzen; Dr Willems Institute, University Campus of Diepenbeek, Belgium
B. Minner
Affiliation:
Psychiatric Centre, Munsterbilzen; Dr Willems Institute, University Campus of Diepenbeek, Belgium
J. Raus
Affiliation:
Psychiatric Centre, Munsterbilzen; Dr Willems Institute, University Campus of Diepenbeek, Belgium
*
1Address for correspondence: Dr M. Maes, Psychiatric Centre, St Jozef, Abdijstraat, 2, 3751 Munsterbilzen, Belgium.

Synopsis

In order to investigate the relationship between the immune apparatus and the hypothalamic–pituitary–adrenal (HPA)-axis activity in depressed patients, we measured in vitro lymphocyte responses to the mitogens Phytohaemagglutinin (PHA), Pokeweed (PWM) and Concanavalin A (Con A) and 8 a.m. baseline cortisol values in plasma, free cortisol excretion in 24 h urine (UFC), basal and post-dexamethasone βendorphin values. Major depressed patients with melancholia/psychotic features exhibited a significantly lower mitogen-induced blast transformation as compared to minor and simple major depressed patients. The lymphocyte responses to the three mitogens were significantly inversely related to baseline cortisol values and postdexamethasone β-endorphin values. The proliferative capacity of lymphocytes to stimulation with PHA and PWM was significantly and positively related to UFC excretion. Up to 45% of the variance in the immune responses to the mitogens was explained by the baseline cortisol, post-dexamethasone β-endorphin and UFC values.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, J., Helderman, H. J., Schlesser, M. A. & Rush, J. (1985). A controlled study of cellular immune function in affective disorders before and during somatic therapy. Psychiatry Research 15, 185193.CrossRefGoogle ScholarPubMed
American Psychiatric Association (1980). Diagnostic and Statistical Manual of Mental Disorders, 3rd edn.American Psychiatric Association: Washington, DC.Google Scholar
Beisel, W. R., Cos, J. J., Horton, R., Chao, P. Y. & Forsham, P. H. (1964). Physiology of urinary cortisol excretion. Journal of Clinical Endocrinology and Metabolism 24, 887893.CrossRefGoogle ScholarPubMed
Berezi, I. (1986). The influence of pituitary-adrenal axis on the immune system. In Pituitary Function and Immunity (ed. Berczi, I.), pp. 133160. CRC Press: Boca Raton.Google Scholar
Berkenbosch, F., Heijnen, C. J., Croiset, G., Revers, C., Ballieux, R. E., Binnekade, R. & Tilders, F. J. H. (1986). Endocrine and immunological responses to acute stress. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, E. J. and Good, R. A.), pp. 109118. Plenum Press: New York.CrossRefGoogle Scholar
Besedovsky, H., del Rey, A. & Sorkin, E. (1983). The immune response evokes changes in brain noradrenergic neurons. Science 221, 564566.CrossRefGoogle ScholarPubMed
Besedovsky, H., del Rey, A., Sorkin, E. & Dinarello, C. A. (1986). Immunoregulatory feedback between interleukin-I and gluco-corticoid hormones. Science 233, 652654.CrossRefGoogle Scholar
Blalock, J. E. & Harp, C. (1981). Interferon and adrenocorticotrophin induction of steroidogenesis, melanogenesis and antiviral activity. Archives of Virology 67, 4349.CrossRefGoogle ScholarPubMed
Blalock, J. E. & Smith, E. M. (1980). Human leukocyte interferon: structural and biological relatedness to adrenocorticotrophic hormones and endorphins. Proceedings of the National Academy of Sciences USA 77, 59755978.CrossRefGoogle Scholar
Calabrese, J. R., Kling, M. A. & Gold, P. W. (1987). Alterations in immunocompetence during stress, bereavement, and depression: focus on neuroendocrine regulation. American Journal of Psychiatry 144, 11231134.Google ScholarPubMed
Carroll, B. J. (1980). Clinical application of neuroendocrine research in depression. In Handbook of Biological Psychiatry, Part III:Brain Mechanisms and Abnormal Behaviour Genetics and Neuro-endocrinology (ed. van Praag, H. M., Lader, H. M., Rafaelsen, O. J. and Sachar, E. J.), pp. 179193. Marcel Dekker: New York.Google Scholar
Cohen, M. R., Pickar, D., Extein, I., Gold, M. S. & Sweeney, D. R. (1984). Plasma cortisol and β-endorphin immunoreactivily in non-major depression. American Journal of Psychiatry 141, 628632.Google Scholar
Cohen, M. R., Pickar, D., Dubois, M. & Cohen, R. M. (1986). Studies of the endogenous opioid system in the human stress response. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 3546. Plenum Press: New York.CrossRefGoogle Scholar
Darko, D. F., Lucas, A. H., Gillin, J. C., Risch, S. C., Golshan, S., Hamburger, R. N., Silverman, M. B. & Janowsky, D. S. (1988). Cellular immunity and the hypothalamic pituitary axis in major affective disorder: a preliminary study. Psychiatry Research 25, 110.CrossRefGoogle ScholarPubMed
Dupont, E., Schandene, L., Devos, R., Lambermont, M. & Wybran, J. (1983). Depletion of lymphocytes with membrane markers of helper phenotype: a feature of acute and chronic drug-induced immunosuppression. Clinical Experimental Immunology 51, 345350.Google ScholarPubMed
Eddy, R. L., Jones, A. L., Gilliland, P. F., Ibarra, J. D., Thompson, J. Q. & McMurray, J. F. (1973). Cushing's syndrome: a prospective study of diagnostic methods. American Journal of Medicine 55, 621630.CrossRefGoogle ScholarPubMed
Farrar, W. L. (1986). Relationship between lymphokine and opiatergic modulation of lymphocyte proliferation. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 241252. Plenum Press: New York.CrossRefGoogle Scholar
Feinberg, M. & Carroll, B. J. (1984). Biological markers for endogenous depression: effects of age, severity of illness, weight loss and polarity. Archives of General Psychiatry 41, 10801085.CrossRefGoogle ScholarPubMed
Gilman, S. C., Schwartz, J. M., Milner, R. J., Bloom, F. E. & Feldman, J. D. (1982). Beta-endorphin enhances lymphocyte proliferative responses. Proceedings of the National Academy of Sciences, USA 79, 42264230.CrossRefGoogle ScholarPubMed
Glasser, L., Hicks, M. J., Lindberg, R. E. & Jones, J. F. (1981). The effect of in vivo dexamethasone on lymphocyte subpopulations: differential response of EA hu rosette-forming cells. Clinical Immunology and Immunopathology 18, 2231.CrossRefGoogle Scholar
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry 23, 5661.CrossRefGoogle ScholarPubMed
Hazum, E., Chang, K. J. & Cuatrecasas, P. (1979). Specific nonopiate receptors for β-endorphin. Science 205, 10331035.CrossRefGoogle ScholarPubMed
Holsboer, F., Doerr, H. G., Gerken, A., Muller, O. A. & Sippell, W. G. (1984). Cortisol, II-deoxycortisol, and ACTH concentrations after dexamethasone in depressed patients and healthy volunteers. Psychiatry Research 17, 1523.CrossRefGoogle Scholar
Irwin, M. & Gillin, J. C. (1987). Impaired natural killer cell activity among depression patients. Psychiatry Research 20, 181182.CrossRefGoogle Scholar
Jankovic, B. D. (1987). Neuroimmune interactions: experimental and clinical strategies. Immunological tellers 16, 341354.Google ScholarPubMed
Keller, S. E., Schleifer, S. J., Sherman, J., Camerino, M. S., Smith, M. & Stein, M. (1981). Comparison of a simplified whole blood and isolated lymphocyte stimulation technique. Immunological Communications. 10, 417431.CrossRefGoogle ScholarPubMed
Kishimoto, S., Tomino, S., Inomata, K., Kotegawa, S., Saito, T., Kuroki, M., Mitsuga, H. & Hisamitsu, S. (1978). Age-related changes in the subsets and functions of human T lymphocytes. Journal of Immunology 121, 17731780.CrossRefGoogle ScholarPubMed
Krishnan, R., Ellinwood, E. H., Laszlo, J., Hood, L. & Ritchie, J. (1987). Effect of gamma interferon on the hypothalamic pituitary adrenal system. Biological Psychiatry. 22, 11631166.CrossRefGoogle ScholarPubMed
Kronfol, Z., & House, D. J. (1985). Depression, hypothalamic pituitary adrenocortical activity and lymphocyte function. Psycho-pharmacological Bulletin. 21, 476479.Google ScholarPubMed
Kronfol, Z., Silva, J., Greden, J., Dembinsky, S., Gardner, R. & Carroll, B. (1983). Impaired lymphocyte function in depressive illness. Life Sciences. 33, 241247.CrossRefGoogle ScholarPubMed
Kronfol, Z., House, D. J., Silva, J. Jr., Greden, J. & Carroll, B. J. (1986). Depression, urinary free cortisol excretion and lymphocyte function. British Journal of Psychiatry. 148, 7073.CrossRefGoogle ScholarPubMed
Larsson, E. L. (1980). Cyclosporin A and dexamethasone suppress T cell responses by selectively acting on distinct sites of the triggering process. Journal of Immunology. 124, 28282833.CrossRefGoogle ScholarPubMed
McCain, H. W., Lamster, I. B., Bozzone, J. M. & Grbic, J. T. (1982). β-endorphin modulates human immune activity via non-opiate receptor mechanisms. Life Science. 31, 16191624.CrossRefGoogle ScholarPubMed
McCain, H. W., Lamsler, I. & Bilotta, J. (1986). Immunosuppressive effects of the opiopeptins. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 273288. Plenum Press: New York.CrossRefGoogle Scholar
McGillis, J. P., Hall, N. R., Vahouny, G. V. & Goldstein, A. L. (1985). Thymosin fraction 5 causes increased serum corticosterone in rodents in vivo. Journal of Immunology 134, 39523955.CrossRefGoogle ScholarPubMed
Maes, M., De Ruyter, M., Hobin, P. & Suy, E. (1986 a). The dexamethasone suppression test, the Hamilton Depression Rating Scale and the DSM-III depression categories. Journal of Affective Disorders 10, 207214.CrossRefGoogle ScholarPubMed
Maes, M., De Ruyter, M. & Suy, E. (1986 b). Repeated dexa-methasone suppression test in depressed patients. Journal of Affective Disorders 11, 165172.CrossRefGoogle Scholar
Maes, M., De Ruyter, M. & Suy, E. (1987). Prediction of subtype and severity of depression by means of dexamethasone suppression test, l-tryptophan/competing amino acids ratio, and MHPG flow. Biological Psychiatry 22, 177188.CrossRefGoogle ScholarPubMed
Maes, M., Bosmans, E., Suy, E., Minner, B. & Raus, J. (1989 a). The impaired mitogen lymphocyte stimulation in severely depressed patients: a complex interface between HPA-axis hyperfunction, noradrenergic activity and the ageing process. British Journal of Psychiatry 155, 793798.CrossRefGoogle ScholarPubMed
Maes, M., Bosmans, E., Suy, E., Minner, B. & Raus, J. (1989 b). Immune cell parameters in severely depressed patients: negative findings. Journal of Affective Disorders 17, 121128.CrossRefGoogle ScholarPubMed
Maes, M., Jacobs, M.-P., Suy, E., Minner, B. & Raus, J. (1990 a). A markedly augmented escape of β-endorphins from suppression by dexamethasone in severely depressed patients. Journal of Affective Disorders 18, 149156.CrossRefGoogle Scholar
Maes, M., Vandewoude, M., Schotte, C., Maes, L., Martin, M. & Blockx, P. (1990 b). A revised interpretation of the post-dexamethasone ACTH and cortisol data in unipolar depressed females. Psychiatry Research. 34. 107126.CrossRefGoogle Scholar
Maes, M., Vandervorst, C., Suy, E., Minner, B. & Raus, J. (1991). A multivariate study on the simultaneous urinary free cortisol, plasma cortisol, adrenocorticotropic hormone, and β-endorphin escape from suppression by dexamethasone in melancholic patients. Acta Psychiatrica Scandinavica (in the press).CrossRefGoogle Scholar
Morley, J. E. & Kay, N. (1986). Neuropeptides and psycho-neuroimmunology. Psychopharmacological Bulletin 4, 10891092.Google Scholar
Norman, T. R., Piperoglou, M., McIntyre, I. M., Lynch, C. & Burrows, G. D. (1987). Plasma immunoreactive β-endorphin in dexamethasone suppressors and non-suppressors of cortisol. Journal of Affective Disorders 12, 233239.CrossRefGoogle ScholarPubMed
Oppenheim, J. J., Ruscetti, F. W. & Faltynek, C. R. (1987). Inter-leukins and Interferons. In Basic and Clinical Immunology (ed. Stites, D. P., Stobo, J. D. and Wells, J. V.), pp. 8295. Prentice-Hall: London.Google Scholar
Ozkan, A. N., Hoyt, D. B., Tompkins, S., Ninnemann, J. L. & Sullivan, J. J. (1988). Immunosuppressive effects of a trauma-induced suppressor active peptide. Journal of Trauma 25, 589592.CrossRefGoogle Scholar
Plotnikoff, N. P., Miller, G. C. & Murgo, A. J. (1982). Enkephalinsendorphins: immunomodulators in mice. International Journal of Immunopharmacology. 4, 366368.CrossRefGoogle Scholar
Plotnikoff, N. P., Faith, R. E., Murgo, A. J. & Good, R. A. (1986). Introduction: the ying–yang hypothesis of immunomodulation. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 12. Plenum Press: New York.CrossRefGoogle Scholar
Portaro, J. K., Glick, G. I. & Zighelboim, J. (1978). Population immunology: age and immune cell parameters. Clinical Immunology and Immunopathology 11, 339345.CrossRefGoogle ScholarPubMed
Riley, V. (1981). Psychoneuroendocrine influences on immunocompetence and neoplasia. Science. 212, 11001109.CrossRefGoogle ScholarPubMed
Ritchie, A. W. S., Oswald, I., Micklem, H. S., Boyd, J. E., Elton, R. A., Jazwinska, E. & James, K. (1983). circadian variation of lymphocyte subpopulations: a study with monoclonal antibodies. British Medical Journal 286, 17731775.CrossRefGoogle ScholarPubMed
Roitt, I. M., Brostoff, J. & Male, D. K. (1985). Immunology. Gower Medical Publishing: New York.Google Scholar
Sapolsky, R. M. & McEwen, B. S. (1988). Why dexamethasone resistance? Two possible neuroendocrine mechanisms. In Hypo-thalamic-Hypothalamic-Pituilary Adrenal Axis (ed. Schatzberg, A. F. and Nemeroff, C. B.), pp. 155170. Raven Press: New York.Google Scholar
Sapolsky, R. M., Rivier, C., Yamamoto, G., Plotsky, P. & Vale, W. (1987). Interleukin-l stimulates the secretion of hypothalamic corticotrophin releasing factor. Science 238, 522524.CrossRefGoogle Scholar
Schlechte, J. A. & Sherman, B. (1986). Lymphocyte glucocorticoid receptor binding in depressed patients with hypercortisolemia. Psychoneuroendocrinology 4, 469474.Google Scholar
Schleifer, S. J., Keller, S. E., Meyerson, A. T., Raskin, M. J., Davis, K. L. & Stein, M. (1984). Lymphocyte function in major depressive disorder. Archives of General Psychiatry 41, 484486.CrossRefGoogle ScholarPubMed
Schleifer, S. J., Keller, S. E., Siris, S. G., Davis, K. L. & Stein, M. (1985). Depression and immunity: lymphocyte function in ambulatory depressed patients, hospitalized schizophrenic patients, and patients hospitalized for herniorrhaphy. Archives of General Psychiatry 42, 129133.CrossRefGoogle ScholarPubMed
Seaman, W. E. (1987). Immunomodulation. In Basic and Clinical Immunology (ed. Stites, D. P., Stobo, J. D. and Wells, J. V.), pp. 228240. Prentice-Hall: London.Google Scholar
Sengar, D. P. S., Waters, B. G. H., Dunne, J. V. & Bouer, I. M. (1982). Lymphocyte subpopulations and mitogenic responses of lymphocytes in manic-depressive disorders. Biological Psychiatry 17, 10171022.Google ScholarPubMed
Smith, E. M. & Blalock, J. E. (1986). A complete ‘regulatory’ loop between the immune and neuroendocrine systems operates through common signal molecules (hormones) and receptors. In Enkephalins and Endorphins: Stress and the Immune System. (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 119128. Plenum Press: New York.CrossRefGoogle Scholar
Snyder, D. S. & Unanue, E. R. (1982). Corticosteroids inhibit murine macrophage la expression and interleukin-1 production. Journal of Immunology 129, 18031808.CrossRefGoogle Scholar
Solomon, G. S., Kay, N. & Morley, J. E. (1986). Endorphins: a link between personality, stress, emotions, immunity, and disease? In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 129144. Plenum Press: New York.CrossRefGoogle Scholar
Spitzer, R. L., Williams, J. B. W. & Gibbon, M. (1985). Structured Clinical Interview for DSM-III Patient Version. Biometrics Research Department, New York State Psychiatric Institute, 722 West 168th Street, New York, NY 10032.Google Scholar
Stein, M. (1986). A reconsideration of specificity in psychosomatic medicine: from olfaction to the lymphocyte. Psychosomatic Medicine 48, 322.CrossRefGoogle ScholarPubMed
Tsokos, G. C. & Balow, J. E. (1986). Regulation of human cellular immune responses by glucocorticosteroids. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 159172. Plenum Press: New York.CrossRefGoogle Scholar
Weber, R. J. & Pert, C. B. (1984). Opiatergic modulation of the immune system. In Central and Peripheral Endorphins: Basic and Clinical Aspects (ed. Muller, E. E. and Genazzani, A. R.), pp. 3542. Raven Press: New York.Google Scholar
Williams, J. B. W. & Spitzer, R. L. (1982). Research Diagnostic Criteria and DSM-III: an annotated comparison. Archives of General Psychiatry 39, 12831289.CrossRefGoogle ScholarPubMed
Yerevanian, B. J., Woolf, P. D. & Iker, H. P. (1983). Plasma ACTH levels in depression before and after recovery: relationship to the dexamethasone suppression test. Psychiatry Research 10, 175181.CrossRefGoogle Scholar
Zagon, I. S. & McLaughlin, P. J. (1986). Endogenous opioid system, stress, and cancer. In Enkephalins and Endorphins: Stress and the Immune System (ed. Plotnikoff, N. P., Faith, R. E., Murgo, A. J. and Good, R. A.), pp. 81100. Plenum Press: New York.CrossRefGoogle Scholar