Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:21:53.476Z Has data issue: false hasContentIssue false

Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: a controlled study of schizophrenic and manic-depressive patients

Published online by Cambridge University Press:  09 July 2009

E. Bullmore*
Affiliation:
Institute of Psychiatry and Institute of Neurology, London
M. Brammer
Affiliation:
Institute of Psychiatry and Institute of Neurology, London
I. Harvey
Affiliation:
Institute of Psychiatry and Institute of Neurology, London
R. Persaud
Affiliation:
Institute of Psychiatry and Institute of Neurology, London
R. Murray
Affiliation:
Institute of Psychiatry and Institute of Neurology, London
M. Ron
Affiliation:
Institute of Psychiatry and Institute of Neurology, London
*
1Address for correspondence: Dr Edward Bullmore, Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, London SE5 8AF

Synopsis

This paper reports development of a computerized (‘box-counting’) method for estimation of fractal dimension (FD) of the magnetic resonance image (MRI) boundary between cerebral cortex and white matter; and the application of this method to MRIs of 39 schizophrenics (SZs), 23 manic-depressives (MDs) and 31 controls (CONs). Mean FD across all diagnostic groups was 1·402; 95% confidence interval (CI) 1·399 to 1·406. Mean FD was greater in boundaries extracted from manic-depressive patients than in boundaries extracted from controls (difference between MD and CON mean FDs = 0·008; 95% CI −0·002 to +0·018); and less in schizophrenics than in controls (difference between SZ and CON mean FDs = −0·003; 95% CI −0·011 to +0·005). Mean FD was positively correlated with subcortical volume and anterior cerebral volume, and negatively correlated with sulcal cerebrospinal fluid volume. Significant differences in mean FD between diagnostic groups were demonstrated by analysis of covariance (ANCOVA; P < 0·01), with age and volumetric measures of brain size as covariates; and manic-depressive boundaries were shown to have significantly greater values for residual FD (after controlling for effects of brain size) than boundaries extracted from controls (t test; P < 0·05). It is proposed that FD is a useful measure of clinically relevant differences in the complexity of MRI boundaries.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altshuler, L. L., Conrad, A., Hauser, P., Li, X., Guze, B. H., Denikoff, K., Tourtellotte, W. & Post, R. (1991). Reduction of temporal lobe volume in bipolar disorder: a preliminary report of magnetic resonance imaging. Archives of General Psychiatry 48, 482483.Google Scholar
American Psychiatric Association (1987). Diagnostic and Statistical Manual of Mental Disorders, Revised 3rd edn. American Psychiatric Association: Washington, DC.Google Scholar
Andreasen, N. C., Swayze, V., Flaum, M., Alliger, R. & Cohen, G. (1990). Ventricular abnormalities in affective disorder: clinical and demographic correlates. American Journal of Psychiatry 147, 893900.Google ScholarPubMed
Barnsley, M. F. (1988). Fractal modelling of real world images. In The Science of Fractal Images (ed. Peitgen, H. O. and Saupe, D.), pp. 219242. Springer-Verlag: New York.Google Scholar
Besson, J. A. O., Henderson, J. G., Foreman, E. I. & Smith, F. W. (1987). An NMR study of lithium responding manic depressive patients. Magnetic Resonance Imaging 5, 273277.CrossRefGoogle ScholarPubMed
Bullmore, E. T., Brammer, M. J., Alarcon, G. & Binnie, C. D. (1992). A new technique for fractal analysis applied to human, intracerebrally recorded, ictal electroencephalographic signals. Neuroscience Letters 146, 227230.CrossRefGoogle ScholarPubMed
Caldwell, C. B., Stapleton, S. J. & Holdsworth, D. W. (1990). Characterisation of mammographic parenchymal pattern by fractal dimension. Physical Medicine and Biology 35, 235247.Google Scholar
Cargill, E. B., Donohoe, K. J., Kolodny, G., Parker, A. J. & Duane, P. (1991). Estimation of fractal dimension of parenchymal organs based on power spectral analysis of nuclear medicine scans. Progress in Clinical and Biological Research 363, 557570.Google Scholar
Carpenter, L. (1992). Data facilities. In Scientific Visualisation (ed. Brodlie, K. W., Carpenter, L. A., Earnshaw, R. A., Gallop, J. R., Hubbold, R. J., Mumford, A. M., Osland, C. D. and Quarendon, P.), pp. 87112. Springer-Verlag: Berlin.Google Scholar
Casanova, M. F., Goldberg, T. E., Suddath, R. L., Daniel, D. G., Rawlings, R., Lloyd, D. G., Loats, H. L., Kleinman, J. E. & Weinberger, D. R. (1990). Quantitative shape analysis of the temporal and prefrontal lobes of schizophrenic patients: a magnetic resonance imaging study. Journal of Neuropsychiatry and Clinical Neurosciences 2, 363372.Google Scholar
Coffey, C. E., Wilkinson, W. E., Weiner, R. D., Parashos, I. A., Djang, W. T., Webb, M. C., Figiel, G. S. & Spritzer, C. E. (1993). Quantitative cerebral anatomy in depression. A controlled magnetic resonance imaging study. Archives of General Psychiatry 50, 716.CrossRefGoogle ScholarPubMed
Cook, M. J., Free, S. L., Straughan, K., Manford, M. R. A., Fish, D. R., Shorvon, S. D. & Stevens, J. M. (1994). Fractal description of normal and abnormal cerebral gyral patterns. Brain Topography (in the press.)Google Scholar
Dupont, R. M., Jernigan, T. L., Butters, N., Delis, D., Hesselink, J. R., Heindel, W. & Gilli, J. C. (1990). Subcortical abnormalities detected in bipolar affective disorder using magnetic resonance imaging. Archives of General Psychiatry 47, 5559.Google Scholar
Fortin, C., Kumaresan, R., Ohley, W. & Hoefer, S. (1992). Fractal dimension in the analysis of medical images. IEEE Engineering in Medicine and Biology 11, 6571.CrossRefGoogle Scholar
Goldberger, A. L., Rigney, D. R. & West, B. J. (1990). Chaos and fractals in human physiology. Scientific American 46, 4249.Google Scholar
Harvey, I., Tofts, P. S., Morris, J. K., Wicks, D. A. & Ron, M. A. (1991). Sources of T 1 variance in normal human white matter. Magnetic Resonance Imaging 9, 5359.Google Scholar
Harvey, I., Ron, M. A., du Boulay, G., Wicks, D., Lewis, S. W. & Murray, R. M. (1993). Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychological Medicine 23, 591604.Google Scholar
Harvey, I., Persaud, R., Ron, M. A., Barker, G. & Murray, R. M. (1994). Volumetric MRI measurements in bipolars compared with schizophrenics and healthy controls. Psychological Medicine 24, 689699.Google Scholar
Honda, E., Domon, M. & Sasaki, T. (1991). A method for determination of fractal dimension of sialographic images. Investigative Radiology 26, 894901.Google Scholar
Johnson, G., Miller, D. H., MacManus, D., Tofts, P. S., du Boulay, E. P. & MacDonald, W. I. (1987 a). STIR sequences in NMR imaging of the optic nerve. Neuroradiology 29, 238245.Google Scholar
Johnson, G., Ormerod, I. E., Barnes, D., Tofts, P. S. & MacManus, D. (1987 b). Accuracy and precision in the measurement of relaxation times in NMR images. British Journal of Radiology 60, 143153.CrossRefGoogle Scholar
Kelsoe, J. R., Cadet, J. L., Pickar, D. & Weinberger, D. R. (1988). Quantitative neuroanatomy in schizophrenia. A controlled magnetic resonance imaging study. Archives of General Psychiatry 45, 533541.Google Scholar
King, C. (1991). Fractal and chaotic dynamics in nervous systems. Progress in Neurobiology 36, 279308.Google Scholar
Kuklinski, W. S., Chandra, K., Ruttirmann, U. E. & Webber, R. L. (1989). Applications of fractal texture analysis to segmentation of dental radiographs. Proceedings SPIE 1092, 111117.CrossRefGoogle Scholar
Lancet Editorial. (1991). Fractals and medicine. Lancet 338, 14251426.Google Scholar
Majumdar, S. & Prasad, R. R. (1988). The fractal dimension of cerebral surfaces using magnetic resonance images. Computers in Physics Nov/Dec 1988, 6973.CrossRefGoogle Scholar
Mandelbrot, B. B. (1977). The Fractal Geometry of Nature. W. H. Freeman and Co.: New York.Google Scholar
Nelson, H. E. (1982). National Adult Reading Test: Manual. NFER-Nelson: Windsor.Google Scholar
Peitgen, H.-O., Jurgens, H. & Saupe, D. (1992). Chaos and Fractals. New Frontiers of Science. Springer-Verlag: New York.CrossRefGoogle Scholar
Robb, R. A. & Barillot, C. (1989). Interactive display and analysis of 3-D medical images. IEEE Transactions on Medical Imaging 8, 217226.Google Scholar
Schroeder, M. (1991). Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W. H. Freeman and Co.: New York.Google Scholar
Shaw, D. M., Frizel, D. & Camps, F. E. (1969). Brain electrolytes in depressive and alcoholic suicides. British Journal of Psychiatry 115, 6979.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1978). Research Diagnostic Criteria. Biometrics Research, New York State Research Institute: New York.CrossRefGoogle ScholarPubMed
Struzik, Z. R. & Dooijes, E. H. (1994). Towards fractal metrology. In Fractals in the Natural and Applied Sciences (ed. Novak, M. M.), pp. 417430. Elsevier Science, B.V.: Amsterdam.Google Scholar
Suddath, R. L., Christison, G. W., Fuller Torrey, E., Casanova, M. F. & Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New England Journal of Medicine 322, 789794.CrossRefGoogle ScholarPubMed
Vicsek, T. (1989). Fractal Growth Phenomena. World Scientific: Singapore.CrossRefGoogle Scholar
Zipursky, R. B., Lim, K. O., Sullivan, E. V., Brown, B. W. & Pfefferbaum, A. (1992). Widespread cerebral gray matter volume deficits in schizophrenia. Archives of General Psychiatry 49, 195205.CrossRefGoogle ScholarPubMed