Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T06:51:44.825Z Has data issue: false hasContentIssue false

Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network?

Published online by Cambridge University Press:  29 May 2008

E. Pomarol-Clotet*
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSam), Spain
R. Salvador
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSam), Spain Fundació Sant Joan de Déu, Barcelona, Spain
S. Sarró
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSam), Spain Psychiatry and Clinical Psychology Programme, Universitat Autònoma de Barcelona, Barcelona, Spain
J. Gomar
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSam), Spain
F. Vila
Affiliation:
Fundació Sant Joan de Déu, Barcelona, Spain
Á. Martínez
Affiliation:
Fundació Sant Joan de Déu, Barcelona, Spain
A. Guerrero
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
J. Ortiz-Gil
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
B. Sans-Sansa
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
A. Capdevila
Affiliation:
Fundació Sant Joan de Déu, Barcelona, Spain
J. M. Cebamanos
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
P. J. McKenna
Affiliation:
Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSam), Spain Department of Psychological Medicine, University of Glasgow, Gartnavel Royal Hospital, UK
*
*Address for correspondence: E. Pomarol-Clotet, M.D., Ph.D., Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain. (Email: [email protected])

Abstract

Background

Functional imaging studies using working memory tasks have documented both prefrontal cortex (PFC) hypo- and hyperactivation in schizophrenia. However, these studies have often failed to consider the potential role of task-related deactivation.

Method

Thirty-two patients with chronic schizophrenia and 32 age- and sex-matched normal controls underwent functional magnetic resonance imaging (fMRI) scanning while performing baseline, 1-back and 2-back versions of the n-back task. Linear models were used to obtain maps of activations and deactivations in the groups.

Results

The controls showed activation in the expected frontal regions. There were also clusters of deactivation, particularly in the anterior cingulate/ventromedial PFC and the posterior cingulate cortex/precuneus. Compared to the controls, the schizophrenic patients showed reduced activation in the right dorsolateral prefrontal cortex (DLPFC) and other frontal areas. There was also an area in the anterior cingulate/ventromedial PFC where the patients showed apparently greater activation than the controls. This represented a failure of deactivation in the schizophrenic patients. Failure to activate was a function of the patients' impaired performance on the n-back task, whereas the failure to deactivate was less performance dependent.

Conclusions

Patients with schizophrenia show both failure to activate and failure to deactivate during performance of a working memory task. The area of failure of deactivation is in the anterior prefrontal/anterior cingulate cortex and corresponds to one of the two midline components of the ‘default mode network’ implicated in functions related to maintaining one's sense of self.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artiges, E, Martinot, JL, Verdys, M, Attar-Levy, D, Mazoyer, B, Tzourio, N, Giraud, MJ, Paillere-Martinot, ML (2000). Altered hemispheric functional dominance during word generation in negative schizophrenia. Schizophrenia Bulletin 26, 709721.CrossRefGoogle ScholarPubMed
Beckmann, CF, Jenkinson, M, Woolrich, MW, Behrens, TE, Flitney, DE, Devlin, JT, Smith, SM (2006). Applying FSL to the FIAC data: model-based and model-free analysis of voice and sentence repetition priming. Human Brain Mapping 27, 380391.CrossRefGoogle Scholar
Bluhm, RL, Miller, J, Lanius, RA, Osuch, EA, Boksman, K, Neufeld, R, Theberge, J, Schaefer, B, Williamson, P (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophrenia Bulletin 33, 10041012.CrossRefGoogle ScholarPubMed
Calhoun, VD, Maciejewski, PK, Pearlson, GD, Kiehl, KA (2007). Temporal lobe and ‘default’ hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human Brain Mapping. Published online: 25 September 2007. doi:10.1002/hbm.20463.Google Scholar
Callicott, JH, Bertolino, A, Mattay, VS, Langheim, FJ, Duyn, J, Coppola, R, Goldberg, TE, Weinberger, DR (2000). Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex 10, 10781092.CrossRefGoogle ScholarPubMed
Callicott, JH, Mattay, VS, Verchinski, BA, Marenco, S, Egan, MF, Weinberger, DR (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. American Journal of Psychiatry 160, 22092215.CrossRefGoogle ScholarPubMed
Chua, SE, McKenna, PJ (1995). Schizophrenia – a brain disease? A critical review of structural and functional cerebral abnormality in the disorder. British Journal of Psychiatry 166, 563582.CrossRefGoogle ScholarPubMed
Del Ser, T, Gonzalez-Montalvo, JI, Martinez-Espinosa, S, Delgado-Villapalos, C, Bermejo, F (1997). Estimation of premorbid intelligence in Spanish people with the Word Accentuation Test and its application to the diagnosis of dementia. Brain and Cognition 33, 343356.CrossRefGoogle Scholar
Fletcher, PC, McKenna, PJ, Frith, CD, Grasby, PM, Friston, KJ, Dolan, RJ (1998). Brain activations in schizophrenia during a graded memory task studied with functional neuroimaging. Archives of General Psychiatry 55, 10011008.CrossRefGoogle ScholarPubMed
Frith, CD, Friston, KJ, Herold, S, Silbersweig, D, Fletcher, P, Cahill, C, Dolan, RJ, Frackowiak, RS, Liddle, PF (1995). Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. British Journal of Psychiatry 167, 343349.CrossRefGoogle ScholarPubMed
Garrity, AG, Pearlson, GD, McKiernan, K, Lloyd, D, Kiehl, KA, Calhoun, VD (2007). Aberrant ‘default mode’ functional connectivity in schizophrenia. American Journal of Psychiatry 164, 450457.CrossRefGoogle ScholarPubMed
Gevins, A, Cutillo, B (1993). Spatiotemporal dynamics of component processes in human working memory. Electroencephalography and Clinical Neurophysiology 87, 128143.CrossRefGoogle ScholarPubMed
Glahn, DC, Ragland, JD, Abramoff, A, Barrett, J, Laird, AR, Bearden, CE, Velligan, DI (2005). Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Human Brain Mapping 25, 6069.CrossRefGoogle ScholarPubMed
Green, DM, Swets, JA (1966). Signal Detection Theory and Psychophysics. Krieger: New York.Google Scholar
Greicius, MD, Krasnow, B, Reiss, AL, Menon, V (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences USA 100, 253258.CrossRefGoogle Scholar
Gusnard, DA (2005). Being a self: considerations from functional imaging. Consciousness and Cognition 14, 679697.CrossRefGoogle ScholarPubMed
Gusnard, DA, Raichle, ME, Raichle, ME (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience 2, 685694.CrossRefGoogle ScholarPubMed
Harrison, BJ, Yucel, M, Pujol, J, Pantelis, C (2007). Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophrenia Research 91, 8286.CrossRefGoogle ScholarPubMed
Hill, K, Mann, L, Laws, KR, Stephenson, CM, Nimmo-Smith, I, McKenna, PJ (2004). Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatrica Scandinavica 110, 243256.CrossRefGoogle ScholarPubMed
Hugdahl, K, Rund, BR, Lund, A, Asbjornsen, A, Egeland, J, Ersland, L, Landro, NI, Roness, A, Stordal, KI, Sundet, K, Thomsen, T (2004). Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. American Journal of Psychiatry 161, 286293.CrossRefGoogle ScholarPubMed
Ingvar, DH, Franzen, G (1974). Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica 50, 425462.CrossRefGoogle ScholarPubMed
Kennedy, DP, Redcay, E, Courchesne, E (2006). Failing to deactivate: resting functional abnormalities in autism. Proceedings of the National Academy of Sciences USA 103, 82758280.CrossRefGoogle ScholarPubMed
Manoach, DS (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Research 60, 285298.CrossRefGoogle ScholarPubMed
Manoach, DS, Press, DZ, Thangaraj, V, Searl, MM, Goff, DC, Halpern, E, Saper, CB, Warach, S (1999). Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biological Psychiatry 45, 11281137.CrossRefGoogle ScholarPubMed
Menzies, L, Ooi, C, Kamath, S, Suckling, J, McKenna, P, Fletcher, P, Bullmore, E, Stephenson, C (2007). Effects of gamma-aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia. Archives of General Psychiatry 64, 156167.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, AS, Olsen, RK, Kohn, PD, Brown, T, Egan, MF, Weinberger, DR, Berman, KF (2005). Regionally specific disturbance of dorsolateral prefrontal–hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry 62, 379386.CrossRefGoogle ScholarPubMed
Raichle, ME, MacLeod, AM, Snyder, AZ, Powers, WJ, Gusnard, DA, Shulman, GL (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA 98, 676682.CrossRefGoogle ScholarPubMed
Schneider, F, Habel, U, Reske, M, Kellermann, T, Stocker, T, Shah, NJ, Zilles, K, Braus, DF, Schmitt, A, Schlosser, R, Wagner, M, Frommann, I, Kircher, T, Rapp, A, Meisenzahl, E, Ufer, S, Ruhrmann, S, Thienel, R, Sauer, H, Henn, FA, Gaebel, W (2007). Neural correlates of working memory dysfunction in first-episode schizophrenia patients: an fMRI multi-center study. Schizophrenia Research 89, 198210.CrossRefGoogle ScholarPubMed
Smith, SM, Jenkinson, M, Woolrich, MW, Beckmann, CF, Behrens, TE, Johansen-Berg, H, Bannister, PR, De Luca, M, Drobnjak, I, Flitney, DE, Niazy, RK, Saunders, J, Vickers, J, Zhang, Y, De Stefano, N, Brady, JM, Matthews, PM (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 (Suppl. 1), S208S219.CrossRefGoogle ScholarPubMed
Sonuga-Barke, EJ, Castellanos, FX (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neuroscience and Biobehavioral Reviews 31, 977986.CrossRefGoogle ScholarPubMed
Spence, SA, Liddle, PF, Stefan, MD, Hellewell, JS, Sharma, T, Friston, KJ, Hirsch, SR, Frith, CD, Murray, RM, Deakin, JF, Grasby, PM (2000). Functional anatomy of verbal fluency in people with schizophrenia and those at genetic risk. Focal dysfunction and distributed disconnectivity reappraised. British Journal of Psychiatry 176, 5260.CrossRefGoogle ScholarPubMed
Tan, HY, Sust, S, Buckholtz, JW, Mattay, VS, Meyer-Lindenberg, A, Egan, MF, Weinberger, DR, Callicott, JH (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. American Journal of Psychiatry 163, 19691977.CrossRefGoogle ScholarPubMed
Thermenos, HW, Goldstein, JM, Buka, SL, Poldrack, RA, Koch, JK, Tsuang, MT, Seidman, LJ (2005). The effect of working memory performance on functional MRI in schizophrenia. Schizophrenia Research 74, 179194.CrossRefGoogle ScholarPubMed
Walter, H, Vasic, N, Hose, A, Spitzer, M, Wolf, RC (2007). Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: evidence from event-related fMRI. NeuroImage 35, 15511561.CrossRefGoogle ScholarPubMed
Wechsler, D (1999). Escala de Inteligencia de Wechsler para Adultos (WAIS-III). TEA Ediciones: Madrid.Google Scholar
Weinberger, DR, Berman, KF, Zec, RF (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry 43, 114124.CrossRefGoogle ScholarPubMed
Weinberger, DR, Egan, MF, Bertolino, A, Callicott, JH, Mattay, VS, Lipska, BK, Berman, KF, Goldberg, TE (2001). Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry 50, 825844.CrossRefGoogle ScholarPubMed
Williamson, P (2007). Are anticorrelated networks in the brain relevant to schizophrenia? Schizophrenia Bulletin 33, 9941003.CrossRefGoogle ScholarPubMed
Zhou, Y, Liang, M, Tian, L, Wang, K, Hao, Y, Liu, H, Liu, Z, Jiang, T (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research 97, 194205.CrossRefGoogle ScholarPubMed