Hostname: page-component-5f745c7db-2kk5n Total loading time: 0 Render date: 2025-01-06T13:32:02.843Z Has data issue: true hasContentIssue false

Examining unique and prospective relationships among self-injurious thoughts and behaviors and posttraumatic stress disorder: a network analysis in two trauma-exposed samples

Published online by Cambridge University Press:  01 July 2020

Elizabeth G. Spitzer*
Affiliation:
Department of Psychology, Auburn University, Auburn, Alabama, USA National Center for PTSD at Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
Natasha Benfer
Affiliation:
Department of Psychology, Auburn University, Auburn, Alabama, USA
Kelly L. Zuromski
Affiliation:
Department of Psychology, Harvard University, Cambridge, Massachusetts, USA
Brian P. Marx
Affiliation:
National Center for PTSD at Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
Tracy K. Witte
Affiliation:
Department of Psychology, Auburn University, Auburn, Alabama, USA
*
Author for correspondence: Elizabeth G. Spitzer, E-mail: [email protected]

Abstract

Background

As self-injurious thoughts and behaviors (SITB) remain a pressing public health concern, research continues to focus on risk factors, such as posttraumatic stress disorder (PTSD). Network analysis provides a novel approach to examining the PTSD-SITB relationship. This study utilized the network approach to elucidate how individual PTSD symptoms may drive and maintain SITB.

Methods

We estimated cross-sectional networks in two samples of trauma-exposed adults (Sample 1: N = 349 adults; Sample 2: N = 1307 Veterans) to identify PTSD symptoms that may act as bridges to SITB. Additionally, we conducted a cross-lagged panel network in Sample 2 to further clarify the temporal relationship between PTSD symptoms and SITB during a 2-year follow-up. Finally, in both samples, we conducted logistic regressions to examine the utility of PTSD symptoms in prospectively predicting SITB, over a 15-day period (Sample 1) and over a 2-year period (Sample 2), allowing us to examine both short- and long-term prediction.

Results

Two PTSD symptoms (i.e. negative beliefs and risky behaviors) emerged as highly influential on SITB in both cross-sectional networks. In the cross-lagged panel network, distorted blame emerged as highly influential on SITB over time. Finally, risky behaviors, unwanted memories, and psychological distress served as the strongest predictors of SITB across the two samples.

Conclusions

Overall, our results suggest that treatments targeting negative beliefs and risky behaviors may prevent SITB in community and Veteran populations, whereas treatments targeting distorted blame and unwanted memories may help reduce SITB for individuals with a history of combat trauma.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzali, M. H., Sunderland, M., Teesson, M., Carragher, N., Mills, K., & Slade, T. (2017). A network approach to the comorbidity between posttraumatic stress disorder and major depressive disorder: The role of overlapping symptoms. Journal of Affective Disorders, 208, 490496.CrossRefGoogle Scholar
Agar, E., Kennedy, P., & King, N. S. (2006). The role of negative cognitive appraisals in PTSD symptoms following spinal cord injuries. Behavioural and Cognitive Psychotherapy, 34(4), 437452.CrossRefGoogle Scholar
Arditte, K. A., Çek, D., Shaw, A. M., & Timpano, K. R. (2016). The importance of assessing clinical phenomena in Mechanical Turk Research. Psychological Assessment, 28(6), 684691.CrossRefGoogle ScholarPubMed
Armour, C., Fried, E. I., Deserno, M. K., Tsai, J., Pietrzak, R. H., & Southwick, S. M. (2017). A network analysis of DSM-5 posttraumatic stress disorder symptoms and correlates in U.S. Military veterans. Journal of Anxiety Disorders, 45, 4959.CrossRefGoogle ScholarPubMed
Bentley, K. H., Franklin, J. C., Ribeiro, J. D., Kleiman, E. M., Fox, K. R., & Nock, M. K. (2016). Anxiety and its disorders as risk factors for suicidal thoughts and behaviors: A meta- analytic review. Clinical Psychology Review, 43, 3046.CrossRefGoogle ScholarPubMed
Bernstein, E. E., Kleiman, E. M., van Bork, R., Moriarity, D. P., Mac Giollabhui, N., McNally, R. J., … Alloy, L. B. (2019). Unique and predictive relationships between components of cognitive vulnerability and symptoms of depression. Depression and Anxiety, 36(10), 950959.CrossRefGoogle ScholarPubMed
Blevins, C. A., Weathers, F. W., Davis, M. T., Witte, T. K., & Domino, J. L. (2015). The posttraumatic stress disorder checklist for DSM-5 (PCL-5): Development and initial psychometric evaluation. Journal of Traumatic Stress, 28(6), 489498.CrossRefGoogle ScholarPubMed
Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91121.CrossRefGoogle Scholar
Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., & Waldorp, L. J. (2011). The small world of psychopathology. PloS One, 6(11), e27407.CrossRefGoogle ScholarPubMed
Bovin, M. J., Marx, B. P., Weathers, F. W., Gallagher, M. W., Rodriguez, P., Schnurr, P. P., & Keane, T. M. (2016). Psychometric properties of the PTSD checklist for diagnostic and statistical manual of mental disorders–fifth edition (PCL-5) in veterans. Psychological Assessment, 28(11), 13791391.CrossRefGoogle ScholarPubMed
Courville, T., & Thompson, B. (2001). Use of structure coefficients in published multiple regression articles: % is not enough. Educational and Psychological Measurement, 61(2), 229248.CrossRefGoogle Scholar
Cramer, A. O., Waldorp, L. J., van der Maas, H. L., & Borsboom, D. (2010). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33(2–3), 137150.CrossRefGoogle ScholarPubMed
Davis, M. T., Witte, T. K., & Weathers, F. W. (2014). Posttraumatic stress disorder and suicidal ideation: The role of specific symptoms within the framework of the interpersonal- psychological theory of suicide. Psychological trauma: Theory, research. Practice, and Policy, 6(6), 610618.Google Scholar
Elhai, J. D., Biehn, T. L., Armour, C., Klopper, J. J., Frueh, B. C., & Palmieri, P. A. (2011). Evidence for a unique PTSD construct represented by PTSD's D1–D3 symptoms. Journal of Anxiety Disorders, 25(3), 340345.CrossRefGoogle ScholarPubMed
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195212.CrossRefGoogle ScholarPubMed
Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). Qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 118.CrossRefGoogle Scholar
Epskamp, S., & Fried, E. I. (2016). A tutorial on estimating regularized partial correlation networks. Behavioral Research Methods, 50(1), 195212.CrossRefGoogle Scholar
First, M. B., Williams, J. B. W., Karg, R. S., & Spitzer, R. L. (2015). Structured clinical interview for DSM–5—research version (SCID-5 for DSM–5, research version; SCID- 5-RV). Arlington, VA: American Psychiatric Association.Google Scholar
Foa, E. B., Ehlers, A., Clark, D. M., Tolin, D. F., & Orsillo, S. M. (1999). The posttraumatic cognitions inventory (PTCI): Development and validation. Psychological Assessment, 11(3), 303314.CrossRefGoogle Scholar
Foa, E. B., Hembree, E. A., & Rothbaum, B. O. (2007). Prolonged exposure therapy for PTSD: Emotional processing of traumatic experiences: Therapist guide. New York, NY, US: Oxford University Press.CrossRefGoogle Scholar
Franklin, J. C., Ribeiro, J. D., Fox, K. R., Bentley, K. H., Kleiman, E. M., Huang, X., … Nock, M. K. (2017). Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychological Bulletin, 143(2), 187232.CrossRefGoogle ScholarPubMed
Fried, E. I., Eidhof, M. B., Palic, S., Costantini, G., Huisman-van Diujk, H. M., Bockting, C. L. M., … Karstoft, K.-I. (2018). Replicability and generalizability of PTSD networks: A cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clinical Psychological Science, 6, 335351.CrossRefGoogle ScholarPubMed
Friedman, M. J. (2013). Finalizing PTSD in DSM-5: Getting here from there and where to go next. Journal of Traumatic Stress, 26(5), 548556.CrossRefGoogle ScholarPubMed
Friedman, A. J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 122.CrossRefGoogle ScholarPubMed
Gradus, J. L., Suvak, M. K., Wisco, B. E., Marx, B. P., & Resick, P. A. (2013). Treatment of posttraumatic stress disorder reduces suicidal ideation. Depression and Anxiety, 30(10), 10461053.Google ScholarPubMed
Haag, C., Robinaugh, D. J., Ehlers, A., & Kleim, B. (2017). Understanding the emergence of chronic posttraumatic stress disorder through acute stress symptom networks. JAMA Psychiatry, 74(6), 649650.CrossRefGoogle ScholarPubMed
Heeren, A., Jones, P. J., & McNally, R. J. (2018). Mapping network connectivity among symptoms of social anxiety and comorbid depression in people with social anxiety disorder. Journal of Affective Disorders, 228, 7582.CrossRefGoogle ScholarPubMed
Joiner, T. E. Jr, Pfaff, J. J., & Acres, J. G. (2002). A brief screening tool for suicidal symptoms in adolescents and young adults in general health settings: Reliability and validity data from the Australian National General Practice Youth Suicide Prevention Project. Behaviour Research and Therapy, 40(4), 471481.CrossRefGoogle Scholar
Jones, P. (2018). networktools: Tools for identifying important nodes in networks (Version 1.2.0). https://CRAN.R-project.org/package=networktools.Google Scholar
Jones, P. J., Ma, R., & McNally, R. J. (2019). Bridge centrality: A network approach to understanding comorbidity. Multivariate Behavioral Research, 115.Google ScholarPubMed
Klonsky, E. D., & Olino, T. M. (2008). Identifying clinically distinct subgroups of self-injurers among young adults: A latent class analysis. Journal of Consulting and Clinical Psychology, 76(1), 2227.CrossRefGoogle ScholarPubMed
Krysinska, K., & Lester, D. (2010). Post-traumatic stress disorder and suicide risk: A systematic review. Archives of Suicide Research, 14(1), 123.CrossRefGoogle ScholarPubMed
Legarreta, M., Graham, J., North, L., Bueler, C. E., McGlade, E., & Yurgelun-Todd, D. (2015). DSM–5 posttraumatic stress disorder symptoms associated with suicide behaviors in veterans. Psychological Trauma: Theory, Research. Practice, and Policy, 7(3), 277285.CrossRefGoogle ScholarPubMed
Levitt, J. T., & Cloitre, M. (2005). A clinician's guide to STAIR/MPE: Treatment for PTSD related to childhood abuse. Cognitive and Behavioral Practice, 12(1), 4052.CrossRefGoogle Scholar
Liu, H., Han, F., Yuan, M., Lafferty, J. D., & Wasserman, L. (2012). High-dimensional semiparametric Gaussian copula graphical models. The Annals of Statistics, 40(4), 22932326.CrossRefGoogle Scholar
McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour Research and Therapy, 86, 95104.CrossRefGoogle ScholarPubMed
McNally, R. J., Heeren, A., & Robinaugh, D. J. (2017). A Bayesian network analysis of posttraumatic stress disorder symptoms in adults reporting childhood sexual abuse. European Journal of Psychotraumatology, 8(sup3), 1341276.CrossRefGoogle ScholarPubMed
McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems a network approach to posttraumatic stress disorder. Clinical Psychological Science, 3(6), 836849.CrossRefGoogle Scholar
Mitchell, K. S., Wolf, E. J., Bovin, M. J., Lee, L. O., Green, J. D., Rosen, R. C., … Marx, B. P. (2017). Network models of DSM–5 posttraumatic stress disorder: Implications for ICD–11. Journal of Abnormal Psychology, 126(3), 355.CrossRefGoogle ScholarPubMed
Nock, M. K., Holmberg, E. B., Photos, V. I., & Michel, B. D. (2007). Self-Injurious thoughts and behaviors interview: Development, reliability, and validity in an adolescent sample. Psychological Assessment, 19(3), 309317.CrossRefGoogle Scholar
Panagioti, M., Gooding, P. A., Triantafyllou, K., & Tarrier, N. (2015). Suicidality and posttraumatic stress disorder (PTSD) in adolescents: A systematic review and meta-analysis. Social Psychiatry and Psychiatric Epidemiology, 50(4), 525537.CrossRefGoogle ScholarPubMed
Park, C. L., Mills, M. A., & Edmondson, D. (2012). PTSD As meaning violation: Testing a cognitive worldview perspective. Psychological Trauma: Theory, Research. Practice, and Policy, 4(1), 6673.CrossRefGoogle ScholarPubMed
Resick, P. A., & Schnicke, M. (1993). Cognitive processing therapy for rape victims: A treatment manual. (Vol. 4). Newbury Park, CA: SAGE.Google Scholar
Rhemtulla, M., van Bork, R., & Cramer, A. O. J. (in press). Cross-lagged network models. Multivariate Behavior Research.Google Scholar
Robinaugh, D. J., Millner, A. J., & McNally, R. J. (2016). Identifying highly influential nodes in the complicated grief network. Journal of Abnormal Psychology, 125(6), 747757.CrossRefGoogle ScholarPubMed
Rosen, R. C., Marx, B. P., Maserejian, N. N., Holowka, D. W., Gates, M. A., Sleeper, L. A., … Keane, T. M. (2012). Project VALOR: Design and methods of a longitudinal registry of post-traumatic stress disorder (PTSD) in combat-exposed veterans in the Afghanistan and Iraqi military theaters of operations. International Journal of Methods in Psychiatric Research, 21(1), 516.CrossRefGoogle ScholarPubMed
RStudio Team (2015). RStudio: Integrated development for R. Boston, MA: RStudio, Inc., Retrieved from http://www.rstudio.com/.Google Scholar
Selaman, Z. M., Chartrand, H. K., Bolton, J. M., & Sareen, J. (2014). Which symptoms of post-traumatic stress disorder are associated with suicide attempts? Journal of Anxiety Disorders, 28(2), 246251.CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 2233.Google ScholarPubMed
Simons, J. S., Simons, R. M., Walters, K. J., Keith, J. A., O'Brien, C., Andal, K., & Stoltenberg, S. F. (2019). Nexus of despair: A network analysis of suicidal ideation among veterans. Archives of Suicide Research, 24(supp 1), 314336.CrossRefGoogle ScholarPubMed
Stone, D. M., Simon, T. R., Fowler, K. A., Kegler, S. R., Yuan, K., Holland, K. M., … Crosby, A. E. (2018). Vital signs: Trends in state suicide rates—United States, 1999–2016 and circumstances contributing to suicide—27 states, 2015. Morbidity and Mortality Weekly Report, 67(22), 617624.CrossRefGoogle Scholar
van Borkulo, C. D., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72(12), 12191226.CrossRefGoogle Scholar
Weathers, F. W., Blake, D. D., Schnurr, P. P., Kaloupek, D. G., Marx, B. P., & Keane, T. M. (2013 a). The Life Events Checklist for DSM-5 (LEC-5). Instrument available from the National Center for PTSD at www.ptsd.va.gov.Google Scholar
Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., & Schnurr, P. P. (2013 b). The PTSD Checklist for DSM-5 (PCL-5). Scale available from the National Center for PTSD at www.ptsd.va.gov.Google Scholar
Wisco, B. E., Marx, B. P., Holowka, D. W., Vasterling, J. J., Han, S. C., Chen, M. S., … Keane, T. M. (2014). Traumatic brain injury, PTSD, and current suicidal ideation among Iraq and Afghanistan US veterans. Journal of Traumatic Stress, 27(2), 244248.CrossRefGoogle Scholar
Witte, T. K., Domino, J. L., & Weathers, F. W. (2015). Item order effects in the evaluation of posttraumatic stress disorder symptom structure. Psychological Assessment, 27(3), 852864.CrossRefGoogle ScholarPubMed
Zhao, T., Li, X., Liu, H., Roeder, K., Lafferty, J., & Wasserman, L. (2015). Huge: High- dimensional undirected graph estimation. R package version 1.2.7. Retrieved from https://CRAN.R-project.org/package=huge.Google Scholar
Zuromski, K. L., Cero, I., & Witte, T. K. (2017). Insomnia symptoms drive changes in suicide ideation: A latent difference score model of community adults over a brief interval. Journal of Abnormal Psychology, 126(6), 739749.CrossRefGoogle Scholar
Supplementary material: File

Spitzer et al. supplementary material

Spitzer et al. supplementary material

Download Spitzer et al. supplementary material(File)
File 2.1 MB