Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T22:39:28.315Z Has data issue: false hasContentIssue false

Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood

Published online by Cambridge University Press:  03 August 2020

Katharina Schultebraucks*
Affiliation:
Department of Emergency Medicine, Vagelos School of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA Data Science Institute, Columbia University, New York, New York, USA
Vijay Yadav
Affiliation:
AiCure, New York, New York, USA
Arieh Y. Shalev
Affiliation:
Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
George A. Bonanno
Affiliation:
Department of Counseling and Clinical Psychology, Teachers College, Columbia University, New York, New York, USA
Isaac R. Galatzer-Levy
Affiliation:
Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA AiCure, New York, New York, USA
*
Author for correspondence: Katharina Schultebraucks, E-mail: [email protected]

Abstract

Background

Visual and auditory signs of patient functioning have long been used for clinical diagnosis, treatment selection, and prognosis. Direct measurement and quantification of these signals can aim to improve the consistency, sensitivity, and scalability of clinical assessment. Currently, we investigate if machine learning-based computer vision (CV), semantic, and acoustic analysis can capture clinical features from free speech responses to a brief interview 1 month post-trauma that accurately classify major depressive disorder (MDD) and posttraumatic stress disorder (PTSD).

Methods

N = 81 patients admitted to an emergency department (ED) of a Level-1 Trauma Unit following a life-threatening traumatic event participated in an open-ended qualitative interview with a para-professional about their experience 1 month following admission. A deep neural network was utilized to extract facial features of emotion and their intensity, movement parameters, speech prosody, and natural language content. These features were utilized as inputs to classify PTSD and MDD cross-sectionally.

Results

Both video- and audio-based markers contributed to good discriminatory classification accuracy. The algorithm discriminates PTSD status at 1 month after ED admission with an AUC of 0.90 (weighted average precision = 0.83, recall = 0.84, and f1-score = 0.83) as well as depression status at 1 month after ED admission with an AUC of 0.86 (weighted average precision = 0.83, recall = 0.82, and f1-score = 0.82).

Conclusions

Direct clinical observation during post-trauma free speech using deep learning identifies digital markers that can be utilized to classify MDD and PTSD status.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alghowinem, S., Goecke, R., Wagner, M., Epps, J., Breakspear, M., & Parker, G. (2013). Detecting depression: a comparison between spontaneous and read speech. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, pp. 75477551.CrossRefGoogle Scholar
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (DSM-5®) (Fifth Edition). Arlington, VA: American Psychiatric Association.Google Scholar
Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). Openface: A general-purpose face recognition library with mobile applications. CMU School of Computer Science, 6, 118.Google Scholar
Anis, K., Zakia, H., Mohamed, D., & Jeffrey, C. (2018). Detecting depression severity by interpretable representations of motion dynamics. 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), IEEE, pp. 739745.CrossRefGoogle Scholar
Asgari, M., Shafran, I., & Sheeber, L. B. (2014). Inferring clinical depression from speech and spoken utterances. IEEE International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, pp. 15.CrossRefGoogle Scholar
Baltrusaitis, T., Zadeh, A., Lim, Y. C., & Morency, L.-P. (2018). Openface 2.0: Facial behavior analysis toolkit. 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), IEEE, pp. 5966.Google Scholar
Bao, H., & Ma, T. (2014). Feature extraction and facial expression recognition based on bezier curve. IEEE International Conference on Computer and Information Technology, IEEE, pp. 884887.CrossRefGoogle Scholar
Beretta, L., & Santaniello, A. (2016). Nearest neighbor imputation algorithms: A critical evaluation. BMC Medical Informatics and Decision Making, 16(Suppl. 3), 7474.CrossRefGoogle ScholarPubMed
Bernard, J. A., & Mittal, V. A. (2015). Updating the research domain criteria: The utility of a motor dimension. Psychological Medicine, 45, 26852689.CrossRefGoogle ScholarPubMed
Bhatia, S., Goecke, R., Hammal, Z., & Cohn, J. F. (2019). Automated measurement of head movement synchrony during dyadic depression severity interviews. 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), IEEE, pp. 18.CrossRefGoogle Scholar
Blechert, J., Michael, T., & Wilhelm, F. H. (2013). Video-based analysis of bodily startle and subsequent emotional facial expression in posttraumatic stress disorder. Journal of Experimental Psychopathology, 4, 435447.CrossRefGoogle Scholar
Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. Sebastopol, CA: O'Reilly Media, Inc.Google Scholar
Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123140.CrossRefGoogle Scholar
Breznitz, Z. (1992). Verbal indicators of depression. The Journal of General Psychology, 119, 351363.CrossRefGoogle ScholarPubMed
Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. Conference on Fairness, Accountability and Transparency, pp. 7791.Google Scholar
Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science (New York, N.Y.), 356, 183186.CrossRefGoogle ScholarPubMed
Calvo, R. A., Milne, D. N., Hussain, M. S., & Christensen, H. (2017). Natural language processing in mental health applications using non-clinical texts. Natural Language Engineering, 23, 649685.CrossRefGoogle Scholar
Cannizzaro, M., Harel, B., Reilly, N., Chappell, P., & Snyder, P. J. (2004). Voice acoustical measurement of the severity of major depression. Brain and Cognition, 56, 3035.CrossRefGoogle ScholarPubMed
Carmi, L., Schultebraucks, K., & Galatzer-Levy, I. (2020). Identification, prediction, and intervention via remote digital technology: Digital phenotyping & deployment of clinical interventions following terror and mass casualty events. In Vermetten, E., Frankova, I., Carmi, L., Chaban, O. & Zohar, J. (Eds.), Management of terrorism induced stress – guideline for the golden hours (pp. 175181). Amsterdam: IOS Press BV.Google Scholar
Chollet, F. (2018). Keras: The python deep learning library. Astrophysics Source Code Library.Google Scholar
Cohn, J. F., Kruez, T. S., Matthews, I., Yang, Y., Nguyen, M. H., Padilla, M. T., … De la Torre, F. (2009). Detecting depression from facial actions and vocal prosody. 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, 2009. ACII 2009, IEEE, pp. 17.CrossRefGoogle Scholar
Cummins, N., Epps, J., Breakspear, M., & Goecke, R. (2011). An investigation of depressed speech detection: Features and normalization. Twelfth Annual Conference of the International Speech Communication Association.CrossRefGoogle Scholar
Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015a). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 1049.CrossRefGoogle Scholar
Cummins, N., Sethu, V., Epps, J., Schnieder, S., & Krajewski, J. (2015b). Analysis of acoustic space variability in speech affected by depression. Speech Communication, 75, 2749.CrossRefGoogle Scholar
Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11, 126.CrossRefGoogle ScholarPubMed
Darwin, C. (1872/1965). The expression of the emotions in man and animals. Chicago: University of Chicago Press.Google Scholar
Davies, H., Wolz, I., Leppanen, J., Fernandez-Aranda, F., Schmidt, U., & Tchanturia, K. (2016). Facial expression to emotional stimuli in non-psychotic disorders: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 64, 252271.CrossRefGoogle ScholarPubMed
De Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of Operations Research, 134, 1967.CrossRefGoogle Scholar
Dibeklioğlu, H., Hammal, Z., & Cohn, J. F. (2017). Dynamic multimodal measurement of depression severity using deep autoencoding. IEEE Journal of Biomedical and Health Informatics, 22, 525536.CrossRefGoogle ScholarPubMed
Eaton, W. W., Smith, C., Ybarra, M., Muntaner, C., & Tien, A. (2004). Center for Epidemiologic Studies Depression Scale: Review and Revision (CESD and CESD-R). In E, Maruish (Ed.), The use of psychological testing for treatment planning and outcomes assessment: Instruments for adults (pp. 363377). Lawrence Erlbaum Associates Publishers.Google Scholar
Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preoţiuc-Pietro, D., … Schwartz, H. A. (2018). Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences of the United States of America, 115, 1120311208.CrossRefGoogle ScholarPubMed
Ekman, P. (2006). Darwin and facial expression: A century of research in review. Los Alton, CA: Malor Books.Google Scholar
Ekman, P., Freisen, W. V., & Ancoli, S. (1980). Facial signs of emotional experience. Journal of Personality and Social Psychology, 39, 1125.CrossRefGoogle Scholar
Ekman, P., & Friesen, W. V. (1978). Facial action coding system: Investigator's guide. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Ekman, P., Matsumoto, D., & Friesen, W. V. (1997). Facial expression in affective disorders. In E, Ekman, & EL, Rosenberg (Eds.), Series in affective science. What the face reveals: Basic and applied studies of spontaneous expression using the facial action coding system (FACS) (pp. 429440). Oxford University Press.Google Scholar
Felmingham, K. L., Rennie, C., Manor, B., & Bryant, R. A. (2011). Eye tracking and physiological reactivity to threatening stimuli in posttraumatic stress disorder. Journal of Anxiety Disorders, 25, 668673.CrossRefGoogle ScholarPubMed
Foa, E., Huppert, J., & Cahill, S. (2006). Pathological anxiety: Emotional processing in etiology and treatment. New York, NY: Guilford Press.Google Scholar
France, D. J., Shiavi, R. G., Silverman, S., Silverman, M., & Wilkes, D. M. (2000). Acoustical properties of speech as indicators of depression and suicidal risk. IEEE Transactions on Biomedical Engineering, 47, 829837.CrossRefGoogle ScholarPubMed
Gaebel, W., & Wölwer, W. (1992). Facial expression and emotional face recognition in schizophrenia and depression. European Archives of Psychiatry and Clinical Neuroscience, 242, 4652.CrossRefGoogle ScholarPubMed
Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636120 Ways to have posttraumatic stress disorder. Perspectives on Psychological Science, 8, 651662.CrossRefGoogle ScholarPubMed
Gehricke, J.-G., & Shapiro, D. (2000). Reduced facial expression and social context in major depression: Discrepancies between facial muscle activity and self-reported emotion. Psychiatry Research, 95, 157167.CrossRefGoogle ScholarPubMed
Geier, T. J., Hunt, J. C., Nelson, L. D., Brasel, K. J., & de Roon-Cassini, T. A. (2019). Detecting PTSD in a traumatically injured population: The diagnostic utility of the PTSD Checklist for DSM-5. Depression and Anxiety, 36, 170178.CrossRefGoogle Scholar
Girard, J. M., Cohn, J. F., Mahoor, M. H., Mavadati, S., & Rosenwald, D. P. (2013). Social risk and depression: Evidence from manual and automatic facial expression analysis. 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), IEEE, pp. 18.CrossRefGoogle Scholar
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. Cambridge: MIT press.Google Scholar
Grother, P. J., Ngan, M., & Hanaoka, K. (2020). Face recognition vendor test (FRVT). Part 2: Identification. National Institute of Standards and Technology (NIST) Interagency Report 8271. U.S. Department of Commerce.Google Scholar
Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405, 947.CrossRefGoogle Scholar
Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., … Coates, A. (2014). Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567.Google Scholar
Hasson, U., Nastase, S. A., & Goldstein, A. (2020). Direct fit to nature: An evolutionary perspective on biological and artificial neural networks. Neuron, 105, 416434.CrossRefGoogle ScholarPubMed
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York, NY: Springer Science & Business Media.CrossRefGoogle Scholar
He, Q., Veldkamp, B. P., & de Vries, T. (2012). Screening for posttraumatic stress disorder using verbal features in self narratives: A text mining approach. Psychiatry Research, 198, 441447.CrossRefGoogle ScholarPubMed
He, Q., Veldkamp, B. P., Glas, C. A., & de Vries, T. (2017). Automated assessment of patients’ self-narratives for posttraumatic stress disorder screening using natural language processing and text mining. Assessment, 24, 157172.CrossRefGoogle ScholarPubMed
Henry, S. K., Grant, M. M., & Cropsey, K. L. (2018). Determining the optimal clinical cutoff on the CES-D for depression in a community corrections sample. Journal of Affective Disorders, 234, 270275.CrossRefGoogle Scholar
Hönig, F., Batliner, A., Nöth, E., Schnieder, S., & Krajewski, J. (2014). Automatic modelling of depressed speech: relevant features and relevance of gender. Fifteenth Annual Conference of the International Speech Communication Association.CrossRefGoogle Scholar
Huckvale, K., Venkatesh, S., & Christensen, H. (2019). Toward clinical digital phenotyping: A timely opportunity to consider purpose, quality, and safety. NPJ Digital Medicine, 2, 111.CrossRefGoogle ScholarPubMed
Insel, T. R. (2014). The NIMH research domain criteria (RDoC) project: Precision medicine for psychiatry. American Journal of Psychiatry, 171, 395397.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167, 748751. doi:10.1176/appi.ajp.2010.09091379.CrossRefGoogle Scholar
Jadoul, Y., Thompson, B., & de Boer, B. (2018). Introducing Parselmouth: A Python interface to Praat. Journal of Phonetics, 71, 115.CrossRefGoogle Scholar
Kirsch, A., & Brunnhuber, S. (2007). Facial expression and experience of emotions in psychodynamic interviews with patients with PTSD in comparison to healthy subjects. Psychopathology, 40, 296302.CrossRefGoogle ScholarPubMed
Kiss, G., Tulics, M. G., Sztahó, D., Esposito, A., & Vicsi, K. (2016). Language independent detection possibilities of depression by speech. In A, Esposito (Ed.), Recent advances in nonlinear speech processing. Smart Innovation, Systems and Technologies (Vol. 48, pp. 103114). Cham.CrossRefGoogle Scholar
Klare, B. F., Burge, M. J., Klontz, J. C., Bruegge, R. W. V., & Jain, A. K. (2012). Face recognition performance: Role of demographic information. IEEE Transactions on Information Forensics and Security, 7, 17891801.CrossRefGoogle Scholar
Kleim, B., Horn, A. B., Kraehenmann, R., Mehl, M. R., & Ehlers, A. (2018). Early linguistic markers of trauma-specific processing predict post-trauma adjustment. Frontiers in Psychiatry, 9, 17.CrossRefGoogle ScholarPubMed
Kohler, C. G., Martin, E. A., Milonova, M., Wang, P., Verma, R., Brensinger, C. M., … Gur, R. C. (2008). Dynamic evoked facial expressions of emotions in schizophrenia. Schizophrenia Research, 105, 3039.CrossRefGoogle Scholar
Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5), 126. doi: http://dx.doi.org/10.18637/jss.v028.i05.CrossRefGoogle Scholar
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer.CrossRefGoogle Scholar
Lang, P. J. (1979). A bio-informational theory of emotional imagery. Psychophysiology, 16, 495512.CrossRefGoogle ScholarPubMed
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436444.CrossRefGoogle ScholarPubMed
Leff, J., & Abberton, E. (1981). Voice pitch measurements in schizophrenia and depression. Psychological Medicine, 11, 849852.CrossRefGoogle ScholarPubMed
Litz, B. T., Orsillo, S. M., Kaloupek, D., & Weathers, F. (2000). Emotional processing in posttraumatic stress disorder. Journal of Abnormal Psychology, 109, 26.CrossRefGoogle ScholarPubMed
Lu, H., Frauendorfer, D., Rabbi, M., Mast, M. S., Chittaranjan, G. T., Campbell, A. T., … Choudhury, T. (2012). Stresssense: Detecting stress in unconstrained acoustic environments using smartphones. Proceedings of the 2012 ACM conference on ubiquitous computing, ACM, pp. 351360.CrossRefGoogle Scholar
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30, 47654774.Google Scholar
Marge, M., Banerjee, S., & Rudnicky, A. I. (2010). Using the Amazon Mechanical Turk for transcription of spoken language. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, pp. 52705273.CrossRefGoogle Scholar
Marmar, C. R., Brown, A. D., Qian, M., Laska, E., Siegel, C., Li, M., … Smith, J. (2019). Speech-based markers for posttraumatic stress disorder in US veterans. Depression and Anxiety, 36, 607616.CrossRefGoogle ScholarPubMed
Mathews, S. C., McShea, M. J., Hanley, C. L., Ravitz, A., Labrique, A. B., & Cohen, A. B. (2019). Digital health: A path to validation. NPJ Digital Medicine, 2, 19.Google ScholarPubMed
McNally, R. J., Otto, M. W., & Hornig, C. D. (2001). The voice of emotional memory: Content-filtered speech in panic disorder, social phobia, and major depressive disorder. Behaviour Research and Therapy, 39, 13291337.CrossRefGoogle ScholarPubMed
McTeague, L. M., Lang, P. J., Laplante, M.-C., Cuthbert, B. N., Shumen, J. R., & Bradley, M. M. (2010). Aversive imagery in posttraumatic stress disorder: Trauma recurrence, comorbidity, and physiological reactivity. Biological Psychiatry, 67, 346356.CrossRefGoogle ScholarPubMed
Meehl, P. E. (1990). Why summaries of research on psychological theories are often uninterpretable. Psychological Reports, 66, 195244.CrossRefGoogle Scholar
Mowery, D., Smith, H. A., Cheney, T., Bryan, C., & Conway, M. (2016). Identifying depression-related tweets from Twitter for public health monitoring. Online Journal of Public Health Informatics, 8, 1.CrossRefGoogle Scholar
Nilsonne, Å. (1987). Acoustic analysis of speech variables during depression and after improvement. Acta Psychiatrica Scandinavica, 76, 235245.CrossRefGoogle ScholarPubMed
Nilsonne, A. (1988). Speech characteristics as indicators of depressive illness. Acta Psychiatrica Scandinavica, 77, 253263.CrossRefGoogle ScholarPubMed
Nilsonne, Å, Sundberg, J., Ternström, S., & Askenfelt, A. (1988). Measuring the rate of change of voice fundamental frequency in fluent speech during mental depression. The Journal of the Acoustical Society of America, 83, 716728.CrossRefGoogle ScholarPubMed
Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., … Schatzberg, A. F. (2016). Major depressive disorder. Nature Reviews Disease Primers, 2, 16065.CrossRefGoogle ScholarPubMed
Ozdas, A., Shiavi, R. G., Silverman, S. E., Silverman, M. K., & Wilkes, D. M. (2004). Investigation of vocal jitter and glottal flow spectrum as possible cues for depression and near-term suicidal risk. IEEE Transactions on Biomedical Engineering, 51, 15301540.CrossRefGoogle ScholarPubMed
Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The development and psychometric properties of LIWC2015. Austin, TX: University of Texas at Austin.Google Scholar
Pennebaker, J. W., Mehl, M. R., & Niederhoffer, K. G. (2003). Psychological aspects of natural language use: Our words, our selves. Annual Review of Psychology, 54, 547577.CrossRefGoogle ScholarPubMed
Pestian, J., Nasrallah, H., Matykiewicz, P., Bennett, A., & Leenaars, A. (2010). Suicide note classification using natural language processing: A content analysis. Biomedical Informatics Insights, 3, 1928.CrossRefGoogle Scholar
Porritt, L. L., Zinser, M. C., Bachorowski, J.-A., & Kaplan, P. S. (2014). Depression diagnoses and fundamental frequency-based acoustic cues in maternal infant-directed speech. Language Learning and Development, 10, 5167.CrossRefGoogle ScholarPubMed
Quatieri, T. F., & Malyska, N. (2012). Vocal-source biomarkers for depression: A link to psychomotor activity. Thirteenth Annual Conference of the International Speech Communication Association.CrossRefGoogle Scholar
Renneberg, B., Heyn, K., Gebhard, R., & Bachmann, S. (2005). Facial expression of emotions in borderline personality disorder and depression. Journal of Behavior Therapy and Experimental Psychiatry, 36, 183196.CrossRefGoogle ScholarPubMed
Rodin, R., Bonanno, G. A., Rahman, N., Kouri, N. A., Bryant, R. A., Marmar, C. R., & Brown, A. D. (2017). Expressive flexibility in combat veterans with posttraumatic stress disorder and depression. Journal of Affective Disorders, 207, 236241.CrossRefGoogle ScholarPubMed
Rude, S., Gortner, E.-M., & Pennebaker, J. (2004). Language use of depressed and depression-vulnerable college students. Cognition & Emotion, 18, 11211133.CrossRefGoogle Scholar
Scherer, S., Lucas, G. M., Gratch, J., Rizzo, A. S., & Morency, L.-P. (2015). Self-reported symptoms of depression and PTSD are associated with reduced vowel space in screening interviews. IEEE Transactions on Affective Computing, 7, 5973.Google Scholar
Scherer, S., Stratou, G., Gratch, J., & Morency, L.-P. (2013). Investigating voice quality as a speaker-independent indicator of depression and PTSD. In Proceedings of Interspeech (pp. 847851). Lyon, France: ISCA.Google Scholar
Schultebraucks, K., & Galatzer-Levy, I. R. (2019). Machine learning for prediction of posttraumatic stress and resilience following trauma: An overview of basic concepts and recent advances. Journal of Traumatic Stress, 32, 215225. doi: 10.1002/jts.22384.CrossRefGoogle ScholarPubMed
Schultebraucks, K, Shalev, AY, & Michopoulos, V, et al. (2020). A validated predictive algorithm of post-traumatic stress course following emergency department admission after a traumatic stressor. Nat Med, 26, 10841088. https://doi.org/10.1038/s41591-020-0951-z.CrossRefGoogle ScholarPubMed
Shah, Z. S., Sidorov, K., & Marshall, D. (2017). Psychomotor cues for depression screening. 22nd International Conference on Digital Signal Processing (DSP), IEEE, pp. 15.CrossRefGoogle Scholar
Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-traumatic stress disorder. New England Journal of Medicine, 376, 24592469.CrossRefGoogle ScholarPubMed
Shmueli, G. (2010). To explain or to predict? Statistical Science, 25, 289310.CrossRefGoogle Scholar
Simon, D., Craig, K. D., Gosselin, F., Belin, P., & Rainville, P. (2008). Recognition and discrimination of prototypical dynamic expressions of pain and emotions. Pain, 135, 5564.CrossRefGoogle ScholarPubMed
Sloan, D. M., Strauss, M. E., Quirk, S. W., & Sajatovic, M. (1997). Subjective and expressive emotional responses in depression. Journal of Affective Disorders, 46, 135141.CrossRefGoogle ScholarPubMed
Sobin, C., & Sackeim, H. A. (1997). Psychomotor symptoms of depression. American Journal of Psychiatry, 154, 417.Google ScholarPubMed
Spitzer, R. L., Endicott, J., & Robins, E. (1978). Research diagnostic criteria: Rationale and reliability. Archives of General Psychiatry, 35, 773782.CrossRefGoogle ScholarPubMed
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36, 111133.Google Scholar
Sturim, D., Torres-Carrasquillo, P. A., Quatieri, T. F., Malyska, N., & McCree, A. (2011). Automatic detection of depression in speech using gaussian mixture modeling with factor analysis. Twelfth Annual Conference of the International Speech Communication Association.CrossRefGoogle Scholar
Syed, Z. S., Sidorov, K., & Marshall, D. (2017). Depression severity prediction based on biomarkers of psychomotor retardation. Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pp. 3743.CrossRefGoogle Scholar
Teasdale, G., Maas, A., Lecky, F., Manley, G., Stocchetti, N., & Murray, G. (2014). The Glasgow Coma Scale at 40 years: Standing the test of time. The Lancet Neurology, 13, 844854.CrossRefGoogle ScholarPubMed
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 11341142.CrossRefGoogle Scholar
van den Broek, E. L., van der Sluis, F., & Dijkstra, T. (2010). Telling the story and re-living the past: How speech analysis can reveal emotions in post-traumatic stress disorder (PTSD) patients. In J, Westerink, M, Krans, & M, Ouwerkerk (Eds.), Sensing emotions. Philips Research Book Series, (Vol. 12, pp. 153180). Dordrecht: Springer.CrossRefGoogle Scholar
Wang, G. (2016). Facial expression recognition method based on Zernike moments and MCE based HMM. 9th International Symposium on Computational Intelligence and Design (ISCID), IEEE, pp. 408411.CrossRefGoogle Scholar
Weathers, F. W. (2017). Redefining posttraumatic stress disorder for DSM-5. Current Opinion in Psychology, 14, 122126.CrossRefGoogle ScholarPubMed
Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., & Schnurr, P. P. (2013). The PTSD Checklist for DSM-5 (PCL-5). Scale available from the National Center for PTSD at http://www.ptsd.va.gov.Google Scholar
Xing, Y., & Luo, W. (2016). Facial expression recognition using local Gabor features and adaboost classifiers. International Conference on Progress in Informatics and Computing (PIC), IEEE, pp. 228232.CrossRefGoogle Scholar
Xu, R., Mei, G., Zhang, G., Gao, P., Judkins, T., Cannizzaro, M., & Li, J. (2012). A voice-based automated system for PTSD screening and monitoring. In MMVR, pp. 552558.Google Scholar
Yang, Y., Fairbairn, C., & Cohn, J. F. (2013). Detecting depression severity from vocal prosody. IEEE Transactions on Affective Computing, 4, 142150.CrossRefGoogle ScholarPubMed
Zhong, S., Chen, Y., & Liu, S. (2014). Facial expression recognition using local feature selection and the extended nearest neighbor algorithm. Seventh International Symposium on Computational Intelligence and Design, IEEE, pp. 328331.CrossRefGoogle Scholar
Supplementary material: File

Schultebraucks et al. supplementary material

Schultebraucks et al. supplementary material

Download Schultebraucks et al. supplementary material(File)
File 69 KB