Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T10:17:24.691Z Has data issue: false hasContentIssue false

Cortical noradrenaline, attention and arousal1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1984

References

Aston-Jones, G. & Bloom, F. E. (1981). Norepinephrine-containing locus coeruleus neurones in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. Journal of Neuroscience 1, 887900.CrossRefGoogle ScholarPubMed
Bliss, J. V. P., Goddard, G. V., Robertson, H. A. & Sutherland, R. J. (1981). Noradrenaline depletion reduces long term potentiation in the rat hippocampus. In Cellular Analogues of Conditioning and Neural Plasticity (ed. Feher, O. and Joo, F.), pp. 175185. Advances in Physiological Science Vol. 36. Pergamon Press: Oxford.CrossRefGoogle Scholar
Bloom, F. (1979). Is there a neurotransmitter code in the brain? In Neurotransmitters (ed. Simon, P.), pp. 205213. Advances in Pharmacology and Therapeutics Vol. 2. Pergamon Press: Oxford and New York.Google Scholar
Broadbent, D E. (1971). Decision and Stress. Academic Press: New York.Google Scholar
Carli, M., Robbins, T. W., Evenden, J. & Everitt, B. J. (1983). Effects of lesions to ascending noradrenergic neurons on performance of a 5-choice serial reaction task in rats: implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behavioural Brain Research 9, 361380.CrossRefGoogle Scholar
Crow, T. J. (1968). Cortical synapses and reinforcement. Nature 219, 736737.CrossRefGoogle ScholarPubMed
Crow, T. J. (1981). Biochemical aspects of memory. In Metabolic Disorders of the Nervous System (ed. Rose, F. Clifford), pp. 369375. Pitman: London.Google Scholar
Dahlström, A. & Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurones. Acta Physiologica Scandinavica 62, Suppl. 232, 155.Google Scholar
Duffy, E. (1962). Activation and Behaviour. Wiley: London.Google Scholar
Everitt, B. J., Robbins, T. W., Gaskin, M. & Fray, P. J. (1983). The effects of lesions to ascending noradrenergic neurones on discrimination learning and performance in the rat. Neuroscience 10, 397410.Google Scholar
Eysenck, M. W. (1982). Attention and Arousal. Springer-Verlag: Berlin.CrossRefGoogle Scholar
Flicker, C. & Geyer, M. A. (1982). Behavior during hippocampal microinfusions, I. Norepinephrine and diversive exploration. Brain Research Reviews 4, 79103.Google Scholar
Foote, S. L., Friedman, R. & Oliver, A. P. (1975). Effects of putative neurotransmitters on neuronal activity in monkey cerebral cortex. Brain Research 86, 229242.CrossRefGoogle Scholar
Gold, P. E. & Sternberg, D. B. (1978). Retrograde amnesia produced by several treatments; evidence for a common neurobiological mechanism. Science 201, 367369.Google Scholar
Gray, J. A. (1982). The Neuropsychology of Anxiety. Oxford University Press: Oxford..Google Scholar
Jouvet, M. (1974). Monoaminergic regulation of the sleep-waking cycle in the cat. In The Neurosciences, Third Study Program (ed. Schmidt, F. O. and Worden, F. G.), pp. 499508. MIT Press: Cambridge, Mass.Google Scholar
Kasamatsu, T. (1983). Neuronal plasticity maintained by the central norepinephrine system in the cat visual cortex. In Progress in Psychobiology and Physiological Psychology, Vol. 10 (ed. Sprague, J. M. and Epstein, A. N.), pp. 1112. Academic Press: New York.Google Scholar
Kasamatsu, T. & Heggelund, P. (1982). Single cell responses in cat visual cortex to visual stimulation during iontophoresis of noradrenaline. Experimental Brain Research 45, 317324.CrossRefGoogle ScholarPubMed
Kety, S. S. (1970). The biogenic amines and the central nervous system: their possible roles in arousal, emotion and learning. In The Neurosciences, Second Study Program (ed. Schmidt, F. O.), pp. 324336. Rockefeller University Press: New York.Google Scholar
Keverne, E. B. & de la Riva, C. (1982). Pheromones in mice: reciprocal action between the nose and brain. Nature 296, 148150.CrossRefGoogle Scholar
Kovacs, G. L., Bohus, B. & Versteeg, D. H. G. (1979). The effects of vasopressin on memory processes: the role of noradrenergic neurotransmission. Neuroscience 4, 15291537.CrossRefGoogle ScholarPubMed
Mason, S. T. & Iversen, S. D. (1979). Theories of dorsal bundle extinction effect. Brain Research Reviews 1, 107137.CrossRefGoogle Scholar
Mason, S. T. & Lin, D. (1980). Dorsal noradrenergic bundle and selective attention. Journal of Comparative and Physiological Psychology 94, 819832.Google Scholar
Morrison, J. H. & Magistretti, P. J. (1983). Monoamines and peptides in cerebral cortex. Trends in Neuroscience 6, 146151.CrossRefGoogle Scholar
Ögren, S. & Fuxe, K. (1974). Learning, noradrenaline and the pituitary-adrenal axis. Medical Biology 52, 399405.Google ScholarPubMed
Olpé, H.-R., Jones, R. S. G. & Steinmann, M. W. (1983). The locus coeruleus actions of psychoactive drugs. Experientia 39, 242249.CrossRefGoogle ScholarPubMed
Robbins, T. W. & Everitt, B. J. (1982). Functional studies of the central catecholamines. International Review of Neurobiology 23, 303365.CrossRefGoogle ScholarPubMed
Robbins, T. W., Everitt, B. J., Fray, P. J., Gaskin, M., Carli, M. & de la Riva, C. (1982). The roles of the central catecholamines in attention and learning. In Behavioral Models and the Analysis of Drug Action (ed. Spiegelstein, M. Y. and Levy, A.), pp. 109134. Elsevier: Amsterdam.Google Scholar
Sahgal, A. & Wright, C. (1983). A comparison of the effects of vasopressin and oxytocin with amphetamine and chlordiazepoxide on passive avoidance behaviour in rats. Psychopharmacology 80, 8892.CrossRefGoogle ScholarPubMed
Segal, M. & Bloom, F. E. (1976). The action of norepinephrine in the rat hippocampus. IV: The effect of locus coeruleus stimulation on evoked hippocampal activity. Brain Research 107, 513525.CrossRefGoogle Scholar
Stein, L. (1968). Chemistry of reward and punishment. In Psychopharmacology: a Review of Progress 1957–1967 (ed. Efron, D. H.), pp. 105123. US Government Printing Office: Washington, D.C.Google Scholar
Sutherland, R. J., Kolb, B., Whishaw, I. Q. & Becker, J. B. (1982). Cortical noradrenaline depletion eliminates sparing of spatial learning after neonatal frontal cortex damage in the rat. Neuroscience Letters 32, 125130.CrossRefGoogle ScholarPubMed
Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathways in rat brain. Acta Physiologica Scandinavica 367 (Suppl.), 149.CrossRefGoogle ScholarPubMed
Walsh, R. N. & Cummins, R. A. (1975). Mechanisms mediating the production of environmentally-produced brain changes. Psychological Bulletin 82, 9861000.Google Scholar
Watabe, K., Nakai, K. & Kasamatsu, T. (1982). Visual afferents to norepinephrine-containing neurones in cat locus coeruleus. Experimental Brain Research 48, 6680.CrossRefGoogle ScholarPubMed
Waterhouse, B. D. & Woodward, D. J. (1980). Interaction of norepinephrine with cerebro-cortical activity evoked by stimulation of somatosensory afferent pathways. Experimental Neurology 67, 1134.CrossRefGoogle Scholar
Weiss, J. M., Bailey, W. H., Goodman, P. A., Hoffman, L. J., Ambrose, M. J., Salmon, S. & Charry, J. M. (1982). A model for neurochemical study of depression. In Behavioral Models and the Analysis of Drug Action (ed. Spiegelstein, M. Y. and Levy, A.), pp. 195233. Elsevier: Amsterdam.Google Scholar