Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T16:20:14.250Z Has data issue: false hasContentIssue false

Cognitive performance of medicated schizophrenics with tardive dyskinesia

Published online by Cambridge University Press:  09 July 2009

Daniel Collerton*
Affiliation:
University Department of Psychiatry, Research Unit in Psychological Medicine, University of Newcastle, Newcastle upon Tyne
Andrew Fairbairn
Affiliation:
University Department of Psychiatry, Research Unit in Psychological Medicine, University of Newcastle, Newcastle upon Tyne
Peter Britton
Affiliation:
University Department of Psychiatry, Research Unit in Psychological Medicine, University of Newcastle, Newcastle upon Tyne
*
1Address for correspondence: Mr Daniel Collerton, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SES 8AF.

Synopsis

Twenty schizophrenic patients with tardive dyskinesia and an equal number of matched controls were tested on a novel cognitive task. The task had two components: cued response and spatial memory. Relative to controls, the dyskinetic subjects showed a superior cued response performance but an equal spatial memory ability. We speculate that this selective facilitation may reflect dopaminergic hyperactivity in the dyskinetic group.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, N. C. & Olsen, S. (1982). Negative v. positive schizophrenia. Definition and validation. Archives of General Psychiatry 39, 789794.CrossRefGoogle ScholarPubMed
Bartels, M. & Themelis, J. (1983). Computerized tomography in tardive dyskinesia. Evidence of structural abnormalities in the basal ganglia system. Archives of Psychiatry and Neurological Sciences 233, 371379.Google ScholarPubMed
Bartus, R. T. (1978). Short-term memory in the rhesus monkey: effects of dopamine blockade via acute haloperidol administration. Pharmacology, Biochemistry and Behavior 9, 353357.CrossRefGoogle ScholarPubMed
Brozoski, T. J., Brown, R. M., Rosvold, H. E. & Goldman, P. S. (1979). Cognitive deficit produced by regional depletion of dopamine in the prefrontal cortex of the rhesus monkey. Science 205, 929932.CrossRefGoogle ScholarPubMed
Christensen, E., Moller, J. E. & Faurbye, A. (1970). Neuropathological investigation of 28 brains from patients with dyskinesia. Acta Psychtatrica Scandinavica 46, 1428.CrossRefGoogle ScholarPubMed
Cools, A. R. (1980). Role of the neostriatal dopaminergic activity in sequencing and selecting behavioural strategies: facilitation of processes involved in selecting the best strategy in a stressful situation. Behavioural Brain Research 1, 361378.CrossRefGoogle Scholar
Cools, A. R., Van Den Bercken, J. H. L., Horstink, M. W. I., Van Spaendonck, K. P. M. & Bergers, H. J. C. (1984). Cognitive and motor shifting disorder in Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry 47, 443453.CrossRefGoogle ScholarPubMed
Dunnett, S. B. & Iversen, S. D. (1979). Selective kainic acid (KA) and 6-hydroxydopamine (6-OHDA) induced caudate lesions in the rat: some behavioural consequences. Neuroscience Letters Suppl. 3, S207.Google Scholar
Famuyiwa, O. O., Eccleston, D., Donaldson, A. A. & Garside, R. F. (1979). Tardive dyskinesia and dementia. British Journal of Psychiatry 135, 500504.CrossRefGoogle ScholarPubMed
Frey, P. W. & Colliver, J. A. (1973). Sensitivity and responsivity measures for discrimination learning. Learning and Motivation 4, 327342.CrossRefGoogle Scholar
Glassman, R. B. & Glassman, H. N. (1980). Oral dyskinesia in brain-damaged rats withdrawn from a neuroleptic: implications for models of tardive dyskinesia. Psychopharmacology 69, 1925.CrossRefGoogle ScholarPubMed
Hagan, J. J., Alpert, J. E., Morris, R. G. M. & Iversen, S. D. (1983). The effects of central catecholamine depletions on spatial learning in rats. Behavioural Brain Research 9, 83104.CrossRefGoogle ScholarPubMed
Jellinger, K. (1977). Neuropathologic findings after neuroleptic long-term therapy. In Neurotoxicology (ed. Roizin, L., Shiraki, H. and Grcevic, N.), pp. 2541. Raven Press: New York.Google Scholar
Jenner, P. & Marsden, C. D. (1983). Neuroleptics and tardive dyskinesia. In Neuroleptics: Neurochemical, Behavioral, and Clinical Perspectives (ed. Coyle, J. T. and Enna, S. J.), pp. 223253. Raven Press: New York.Google Scholar
Lees, A. J. & Smith, E. (1983). Cognitive deficits in the early stages of Parkinson's disease. Brain 106, 257270.CrossRefGoogle ScholarPubMed
Mayes, A. (1983). Amnesia in man and other animals. In Memory in Humans and Animals (ed. Mayes, A.), pp. 101120. Van Nostrand Reinhold: New York.Google Scholar
Oberg, R. G. E. & Divac, I. (1979). ‘Cognitive’ functions of the neostriatum. In The Neostriatum (ed. Divac, I. and Oberg, R. G. E.), pp. 291313. Pergamon Press: Oxford.CrossRefGoogle Scholar
Petrides, M. & Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 20, 249262.CrossRefGoogle ScholarPubMed
Randrup, A. & Munkvad, I. (1967). Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia 11, 300310.CrossRefGoogle ScholarPubMed
Reches, A., Wagner, R. H., Jackson, V., Yablonskaya-Alter, E. & Fahn, S. (1983). Dopamine receptors in the denervated striatum: further supersensitivity by chronic haloperidol treatment. Brain Researches, 183185.CrossRefGoogle ScholarPubMed
Ridley, R. M., Weight, M. L., Haystead, T. A. J. & Baker, H. F. (1980). ‘Go hereb – go there’ performance after amphetamine: the importance of the response requirement in successive discrimination. Psychopharmacology 69, 271273.CrossRefGoogle Scholar
Ridley, R. M., Haystead, T. A. J. & Baker, H. F. (1981). An involvement of dopamine in higher order choice mechanisms in the monkey. Psychopharmacology 72, 173177.CrossRefGoogle ScholarPubMed
Rosvold, H. E. (1968). The prefrontal cortex and caudate nucleus: a system for effecting correction in response mechanisms. In Mind as a Tissue (ed. Rupp, C.), pp. 2138. Harper and Row: New York.Google Scholar
Rylander, G. (1971). Stereotypy in man following amphetamine abuse. In The Correlation of Adverse Effects in Man with Observations in Animals (ed. Baker, S. B. C.), p. 28. Excerpta Medica: Amsterdam.Google Scholar
Simon, H., Scatton, B. & Le Moal, M. (1980). Dopaminergic AIO neurones are involved in cognitive functions. Nature 286, 150151.CrossRefGoogle Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1978). Research Diagnostic Criteria: rationale and reliability. Archives of General Psychiatry 35, 773782.CrossRefGoogle ScholarPubMed
Staunton, D. A., Magistretti, P. J., Koob, G. F., Shoemaker, W. J. & Bloom, F. E. (1982). Dopaminergic supersensitivity induced by denervation and chronic receptor blockade is additive. Nature 299, 7274.CrossRefGoogle ScholarPubMed
Struve, F. A. & Wilner, W. E. (1983). Cognitive dysfunction and tardive dyskinesia. British Journal of Psychiatry 143, 597600.CrossRefGoogle ScholarPubMed
Ungerstedt, U. & Herrera-Marschitz, M. (1981). Tardive dyskinesia – an attempt to put together data from the clinic and the animal laboratory. In Biological Psychiatry 1981 (ed. Perris, C., Struwe, G. and Jansson, B.), pp. 840843. Elsevier/North-Holland Biomedical Press: Amsterdam.Google Scholar
Wechsler, D. (1955). Manual for the Wechsler Intelligence Scale. Psychological Corporation: New York.Google Scholar
Wolf, M. E., Ryan, J. J. & Mosnaim, A. D. (1983). Cognitive functions in tardive dyskinesia. Psychological Medicine 13, 671674.CrossRefGoogle ScholarPubMed