Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T01:01:47.427Z Has data issue: false hasContentIssue false

A cancellation test: its reliability in assessing attentional deficits in Alzheimer's disease

Published online by Cambridge University Press:  09 July 2009

Sergio Della Sala
Affiliation:
Neuropsychology Unit, Neurology Department, Clinica del Lavoro Foundation, Veruno Rehabilitation Centre; First Neurological Department of the University of Milan, Italy
Marcella Laiacona
Affiliation:
Neuropsychology Unit, Neurology Department, Clinica del Lavoro Foundation, Veruno Rehabilitation Centre; First Neurological Department of the University of Milan, Italy
Hans Spinnler*
Affiliation:
Neuropsychology Unit, Neurology Department, Clinica del Lavoro Foundation, Veruno Rehabilitation Centre; First Neurological Department of the University of Milan, Italy
Chiara Ubezio
Affiliation:
Neuropsychology Unit, Neurology Department, Clinica del Lavoro Foundation, Veruno Rehabilitation Centre; First Neurological Department of the University of Milan, Italy
*
1 Address for correspondence: Dr Hans Spinnler, First Neurological Department of the University, Ospedale San Paolo alla Barona, Via di Rudini, 8–20142 Milano, Italy.

Synopsis

The aim of the study is to provide (i) a standardized procedure for a Cancellation Test of Digits, designed to assess in the visual modality selective attention deficits in patients with Alzheimer's disease, and (ii) a detailed analysis of how patients cope with it.

Age-, education-, and sex-adjusted normative scores earned by 352 healthy controls are set forth, as well as data yielded by the Digit Cancellation Test in 74 Alzheimer patients, in 26 patients with a CT-assessed frontal lobe lesion and in a group of 24 healthy subjects urged to perform the task with a shortened time-constraint. Findings include discriminant power of Alzheimer patients versus healthy controls, sensitivity to cognitive evolution of the dementing process and analysis of errors. Attention data failed to supply psychometric support for the posterior-to-anterior algorithm of progressive cortical encroachment of Alzheimer's disease suggested by PET-findings.

Emphasis is put on methodological aspects of neuropsychological research on Alzheimer patients and on the analysis of processing components of the tests employed. Results are discussed in the light of the relationships between psychometric assessments and related functions, and underlying neuronal degeneration.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitkin, M., Anderson, D., Francis, B. & Hinde, J. (1989). Statistical Modelling in GLIM. Oxford Science Publication: Oxford.Google Scholar
American Psychiatric Association (1987). Diagnostic and Statistical Manual of Mental Disorders, 3rd edn, revised. APA: Washington.Google Scholar
Arrigoni, G. & De Renzi, E. (1964). Constructional apraxia and hemispheric locus of lesion. Cortex 1, 180197.CrossRefGoogle Scholar
Baddeley, A. D. (1986). Working Memory. Oxford University Press: London.Google ScholarPubMed
Baddeley, A. D., Logie, R., Bressi, S., Della Sala, S. & Spinnler, H. (1986). Dementia and working memory. Quarterly Journal of Experimental Psychology 38A, 603618.CrossRefGoogle Scholar
Baddeley, A. D., Della Sala, S. & Spinnler, H. (1991 a). The two-component hypothesis of memory deficit in Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology 13, 372380.CrossRefGoogle ScholarPubMed
Baddeley, A. D., Bressi, S., Della Sala, S., Logie, R. & Spinnler, H. (1991 b). The decline of working memory in Alzheimer's disease: a longitudinal study. Brain 114, 25212542.CrossRefGoogle ScholarPubMed
Basso, A., Capitani, E., Luzzatti, C. & Spinnler, H. (1981). Intelligence and left hemisphere disease: the role of aphasia, apraxia and size of lesion. Brain 104, 721734.CrossRefGoogle ScholarPubMed
Basso, A., Capitani, E., Luzzatti, C., Spinnler, H. & Zanobio, E. (1985). Different basic components in the performances of Broca's and Wernicke's aphasics in the color-figure matching test. Neuropsychologia 23, 5159.CrossRefGoogle Scholar
Bernstein, N. A. (1967). Coordination and Regulation of Movement. Pergamon: Oxford.Google Scholar
Bradshaw, J. L. (1989). Sex differences. In Hemispheric Specialization and Psychological Function (ed. Bratshow, J. L.), pp. 177191. Wiley: Chichester.Google Scholar
Bruggeman, C., Eling, P. & Jansen, R. (1989). A comparison of the Bourdon-Vos and Alertron test. Journal of Clinical and Experimental Neuropsychology 3, 350.Google Scholar
Buschke, H. & Fuld, P. A. (1974). Evaluating storage retention and retrieval in disordered memory and learning. Neurology 1, 10191025.CrossRefGoogle Scholar
Caird, W. K. & Inglis, J. (1961). The short-term storage of auditory and visual two-channel (digits by elderly patients with memory disorder). Mental Sciences 107, 10621069.CrossRefGoogle ScholarPubMed
Capitani, E. & Laiacona, M. (1988). Aging and psychometric diagnosis of intellectual impairment: some considerations on test scores and their use. Developmental Neuropsychology 4, 325330.CrossRefGoogle Scholar
Capitani, E., Della Sala, S. & Spinnler, H. (1986). Neuropsychological Approach to Dementia. Springer: Berlin.CrossRefGoogle Scholar
Capitani, E., Della Sala, S., Lucchelli, F., Soave, P. & Spinnler, H. (1988). Perceptual attention in aging and dementia measured by Gottschaldt's Hidden Figure Text. Journal of Gerontology 43, 157163.
Capitani, E., Della Sala, S. & Spinnler, H. (1990). Controversial neuropsychological issues in Alzheimer's disease: influence of onset-age and hemispheric asymmetry of impairment. Cortex 1, 133145.CrossRefGoogle Scholar
Della Sala, S., Nichelli, P. & Spinnler, H. (1986). An Italian series of patients with organic dementia. Italian Journal of Neurological Sciences 7, 2741.CrossRefGoogle ScholarPubMed
Della Sala, S., Lucchelli, F. & Spinnler, H. (1987). Ideomotor apraxia in patients with Alzheimer's dementia. Journal of Neurology 234, 9193.CrossRefGoogle Scholar
Della Sala, S., Laiacona, M., Spinnler, H. & Trivelli, C. (1992). Is autobiographical impairment due to a deficit in recollection? An overview of studies on Alzheimer dements, frontal and global amnesia. In Theoretical Perspectives on Autobiographical Memory (ed. Conway, M. A., Rubin, D. C., Spinnler, H. and Wagenaar, A.), pp. 451472. Kluwer Academic Publishers: Dordrecht, The Netherlands.CrossRefGoogle Scholar
De Renzi, E. & Vignolo, L. A. (1962). The token test: a sensitive test to detect receptive disturbances in aphasia. Brain 85, 665678.CrossRefGoogle Scholar
Goldberg, E. & Bilder, R. M. (1987). The frontal lobes and hierarchical organization of cognitive control. In The frontal Lobes Revisited (ed. Perecman, E.), pp. 159187. IRBN Press: New York.Google Scholar
Grady, C. L., Grimes, A. M., Patronas, N., Sunderland, T., Foster, N. L. & Rapoport, S. I. (1989). Divided attention, as measured by dichotic speech performances, in dementia of the Alzheimer type. Archives of Neurology 46, 317320.CrossRefGoogle ScholarPubMed
Hasher, L. & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology (General) 108, 356388.CrossRefGoogle Scholar
Hiltbrunner, B., Kinsbourne, M. & Hassink, R. I. (1990). MRI patterns of prefrontal myelination: neuropsychological implication. Journal of Clinical and Experimental Neuropsychology 3, 409410.Google Scholar
Hughes, C. P., Berg, L., Danziger, W. L., Cohen, L. A. & Martin, R. L. (1982). A new clinical scale for staging of dementia. British Journal of Psychiatry 140, 566572.CrossRefGoogle ScholarPubMed
Hutton, J. T., Nagel, J. A. & Loewenson, R. B. (1984). Eye tracking dysfunction in Alzheimer type dementia. Neurology 34, 99102.CrossRefGoogle ScholarPubMed
Jackson, J. H. (1968). Evolution and dissolution of the nervous system. In Selected Writings of John Hughlings Jackson (ed. Taylor, J.), pp. 3118. Basic Books: New York.Google Scholar
James, W. (1890). Principles of Psychology. Holt: New York.Google Scholar
Jorm, A. F. (1986). Controlled and automatic information processing in senile dementia: a review. Psychological Medicine 16, 7788.CrossRefGoogle ScholarPubMed
Kahneman, D. (1973). Attention and Effort. Prentice-Hall: Englewood Cliffs, NJ.Google Scholar
Kleist, K. (1934). Gehrinpathologie. Barth: Leipzig.Google Scholar
Lezak, M. D. (1983). Neuropsychological Assessment (ch. 17, orientation and attention). Oxford University Press: New York.Google Scholar
Luria, A. R. (1980). Higher Cortical Functions in Man (2nd rev. ed.) (Haigh, B., transl.). Basic Books: New York.CrossRefGoogle Scholar
McGlone, J. (1986). The neuropsychology of sex differences in human brain organisation. In Advances in Clinical Neuropsychology (ed. Goldstein, G. and Tarter, R. E.), pp. 130. Plenum Press: New York.Google Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease. Neurology 34, 939944.CrossRefGoogle ScholarPubMed
Martin, A., Browers, P., Lalonde, F., Cox, C., Teleska, P. & Fedio, P. (1986). Towards a behavioral typology of Alzheimer's patients. Journal of Clinical and Experimental Neuropsychology 8, 594610.CrossRefGoogle ScholarPubMed
Morris, R. G. & Baddeley, A. D. (1988). Primary and working memory functioning in Alzheimer-type dementia. Journal of Clinical and Experimental Neuropsychology 10, 279296.CrossRefGoogle ScholarPubMed
Nebes, R. D. & Brady, C. B. (1989). Integrity of semantic fields in Alzheimer's disease. Cortex 25, 305315.CrossRefGoogle Scholar
Nebes, R. D., Brady, C. B. & Huff, F. J. (1989). Automatic and attentional mechanisms of semantic priming in Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology 11, 219230.CrossRefGoogle ScholarPubMed
Norman, D. A. & Shallice, T. (1980). Attention and action: willed and automatic control of behavior. Center of Human Information Processing, Technical Report No. 99.Google Scholar
Norman, D. A. & Shallice, T. (1986). Attention and action. Willed and automatic control of behavior. Consciousness and Self-regulation. Advances in Research and Theory (ch. 1). Plenum Press: New York.Google Scholar
Parasurman, R. & Davies, D. R. (1984). Varieties of Attention. Academic Press: Orlando.Google Scholar
Pawlik, G. & Heiss, W. D. (1989). Positron emission tomography and neuropsychological function. In Neuropsychological Function and Brain Imaging (ed. Bigler, E. D., Yeo, R. A., Turkheimer, E.), pp. 65138. Plenum Press: New York.CrossRefGoogle Scholar
Perecman, E. (ed.) (1987). The Frontal Lobes Revisited. IRBN Press: New York.Google Scholar
Pettegrew, J. W. (1989). Molecular insights into Alzheimer's disease. Annals of the New York Academy of Science 568, 558.CrossRefGoogle ScholarPubMed
Pillsbury, W. B. (1908). Attentions. Swan Sonnenschein: London.CrossRefGoogle Scholar
Raven, J. C. (1938). Standard Progressive Matrices. Sets A, B, C, D and E. Lewis: London.Google Scholar
Reason, J. (1984). Lapses of attention. In Varieties of Attention (ed. Parasuraman, R. and Davies, D. R.), ch. 14, pp. 515549. Academic Press: New York.Google Scholar
Schneider, W. & Shiffrin, R. M. (1977). Controlled and automatic information processing. I. Detection, search and attention. Psychological Review 84, 166.CrossRefGoogle Scholar
Shallice, T., Burgess, P. W., Schon, F. & Baxter, D. M. (1989). The origins of utilization behaviour. Brain 112, 15871598.CrossRefGoogle ScholarPubMed
Simon, J. R. & Acosta, E. Jr., (1982). Effect of irrelevant information on the processing of relevant information: facilitation and/or interference? The influence of experimental design. Perception and Psychophysics 31, 383388.CrossRefGoogle ScholarPubMed
Sjögren, T., Sjögren, H. & Lindgren, A. G. H. (1952). Morbus Alzheimer and morbus Pick: a genetic, clinical and pathoanatomical study. Acta Psychiatrica et Neurologica Scandinavica (suppl. 82), 1152.Google Scholar
Spinnler, H. (1991). The role of attention disorders in the cognitive breakdown of dementia. In Handbook of Neuropsychology (ed. Boller, F. and Grafman, J.), vol. v, pp. 79122. Elsevier: Amsterdam.Google Scholar
Spinnler, H. & Tognoni, G. (1987). Standardizzazione e taratura italiana di test neurpsicologici. Italian Journal of Neurological Sciences (suppl. 8).Google Scholar
Spinnler, H. & Della Sala, S. (1988). The role of clinical neuropsychology in the neurological diagnosis of Alzheimer's disease. Journal of Neurology 235, 258271.CrossRefGoogle ScholarPubMed
Street, R. F. (1931). A Gestalt Completion Test. Contribution to Education No. 481, Bureau of Publications, Teachers' College, Columbia University: New York.Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18, 643662.CrossRefGoogle Scholar
Stuart-Hamilton, I., Rabbit, P. & Huddy, A. (1988). The role of selective attention in the visuo-spatial memory of patients suffering from dementia of the Alzheimer type. Comprehensive Gerontology 2, 129134.Google ScholarPubMed
Talland, G. & Schwab, R. S. (1964). Performance with multiple sets in Parkinson's disease. Neuropsychologia 2, 4553.CrossRefGoogle Scholar
Tenber, H.-L. (1964). The middle of frontal lobe function in man. In The Frontal Granular Cortex and Behavior (ed. Warren, J. M. and Akert, K.), pp. 410444. McGraw-Hill: New York.Google Scholar
Weigl, E. (1927). On the psychology of so-called processes of abstraction (translation). Journal of Abnormal Social Psychology 36, 333.CrossRefGoogle Scholar
Wickens, C. D. (1984). Processing resources in attention. Varieties of Attention (ch. 3). Academic Press: Orlando.Google Scholar
Wilks, S. S. (1941). Determination of sample size for setting tolerance limits. Annals of Mathematical Statistics 12, 9196.CrossRefGoogle Scholar