Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T00:28:16.206Z Has data issue: false hasContentIssue false

Brain structural effects of treatments for depression and biomarkers of response: a systematic review of neuroimaging studies

Published online by Cambridge University Press:  20 December 2019

Verena Enneking
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
Elisabeth J. Leehr
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
Udo Dannlowski
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
Ronny Redlich*
Affiliation:
Department of Psychiatry, University of Münster, Münster, Germany
*
Author for correspondence: Ronny Redlich, E-mail: [email protected]

Abstract

Antidepressive pharmacotherapy (AD), electroconvulsive therapy (ECT) and cognitive behavioural therapy (CBT) are effective treatments for major depressive disorder. With our review, we aim to provide a systematic overview of neuroimaging studies that investigate the effects of AD, ECT and CBT on brain grey matter volume (GMV) and biomarkers associated with response. After a systematic database research on PubMed, we included 50 studies using magnetic resonance imaging and investigating (1) changes in GMV, (2) pre-treatment GMV biomarkers associated with response, or (3) the accuracy of predictions of response to AD, ECT or CBT based on baseline GMV data. The strongest evidence for brain structural changes was found for ECT, showing volume increases within the temporal lobe and subcortical structures – such as the hippocampus–amygdala complex, anterior cingulate cortex (ACC) and striatum. For AD, the evidence is heterogeneous as only 4 of 11 studies reported significant changes in GMV. The results are not sufficient in order to draw conclusions about the structural brain effects of CBT. The findings show consistently that higher pre-treatment ACC volume is associated with response to AD, ECT and CBT. An association of higher pre-treatment hippocampal volume and response has only been reported for AD. Machine learning approaches based on pre-treatment whole brain patterns reach accuracies of 64–90% for predictions of AD or ECT response on the individual patient level. The findings underline the potential of brain biomarkers for the implementation in clinical practice as an additive feature within the process of treatment selection.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, C. C., Gallegos, P., Rediske, N., Lemke, N. T., & Quinn, D. K. (2014). A review of longitudinal electroconvulsive therapy: Neuroimaging investigations. Journal of Geriatric Psychiatry and Neurology, 27, 3346.CrossRefGoogle ScholarPubMed
American Psychiatric Association (APA). (2010). Practice guideline for the treatment of patients major depressive disorder (3rd ed.): Washington, DC. Retrieved from https://psychiatryonline.org/guidelines.Google Scholar
Arnone, D., McIntosh, A. M., Ebmeier, K. P., Munafò, M. R., & Anderson, I. M. (2012). Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. European Neuropsychopharmacology, 22, 116.CrossRefGoogle ScholarPubMed
Arnone, D., McKie, S., Elliott, R., Juhasz, G., Thomas, E. J., Downey, D., … Anderson, I. M. (2013). State-dependent changes in hippocampal grey matter in depression. Molecular Psychiatry, 18, 12651272.CrossRefGoogle ScholarPubMed
Atkinson, L., Sankar, A., Adams, T. M., & Fu, C. H. Y. (2014). Recent advances in neuroimaging of mood disorders: Structural and functional neural correlates of depression, changes with therapy, and potential for clinical biomarkers. Current Treatment Options in Psychiatry, 1, 278293.CrossRefGoogle Scholar
Ball, T. M., Stein, M. B., & Paulus, M. P. (2014). Toward the application of functional neuroimaging to individualized treatment for anxiety and depression. Depression and Anxiety, 31, 920933.CrossRefGoogle ScholarPubMed
Bartlett, E. A., Delorenzo, C., Sharma, P., Yang, J., Zhang, M., Petkova, E., … Parsey, R. V. (2018). Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder. Neuropsychopharmacology, 43, 22212230.CrossRefGoogle ScholarPubMed
Beck, A. T., Rush, A. J., Shaw, B. F., & Emery, G. (1979). Cognitive therapy of depression. New York: Guilford Press.Google Scholar
Bennett, C. M., & Miller, M. B. (2010). How reliable are the results from functional magnetic resonance imaging? Annals of the New York Academy of Sciences, 1191, 133155.CrossRefGoogle ScholarPubMed
Berlim, M. T., McGirr, A., Van Den Eynde, F., Fleck, M. P. A., & Giacobbe, P. (2014). Effectiveness and acceptability of deep brain stimulation (DBS) of the subgenual cingulate cortex for treatment-resistant depression: A systematic review and exploratory meta-analysis. Journal of Affective Disorders, 159, 3138.CrossRefGoogle ScholarPubMed
Bora, E., Fornito, A., Pantelis, C., & Yücel, M. (2012). Gray matter abnormalities in major depressive disorder: A meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138, 918.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., Posner, M., Ochsner, K. N., & Gross, J. J. (2005). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215222.CrossRefGoogle Scholar
Cano, M., Lee, E., Cardoner, N., Martínez-Zalacaín, I., Pujol, J., Makris, N., … Camprodon, J. A. (2018). Brain volumetric correlates of right unilateral versus bitemporal electroconvulsive therapy for treatment-resistant depression. The Journal of Neuropsychiatry and Clinical Neurosciences, 31, 152158.CrossRefGoogle ScholarPubMed
Cao, B., Luo, Q., Fu, Y., Du, L., Qiu, T., Yang, X., … Qiu, H. (2018). Predicting individual responses to the electroconvulsive therapy with hippocampal subfield volumes in major depression disorder. Scientific Reports, 8, 5434.CrossRefGoogle ScholarPubMed
Chen, C.-H., Ridler, K., Suckling, J., Williams, S., Fu, C. H. Y., Merlo-Pich, E., & Bullmore, E. (2007). Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biological Psychiatry, 62, 407414.CrossRefGoogle ScholarPubMed
Coffey, C. E., Weiner, R. D., Djang, W. T., Figiel, G. S., Soady, S. R., Patterson, L. J., … Wilkinson, W. E. (1991). Brain anatomic effects of electroconvulsive therapy. A prospective magnetic resonance imaging study. Archieves of General Psychiatry, 48, 10131021.CrossRefGoogle ScholarPubMed
Colle, R., Cury, C., Chupin, M., Deflesselle, E., Hardy, P., Nasser, G., … Corruble, E. (2016). Hippocampal volume predicts antidepressant efficacy in depressed patients without incomplete hippocampal inversion. NeuroImage: Clinical, 12, 949955.CrossRefGoogle ScholarPubMed
Costafreda, S. G., Chu, C., Ashburner, J., & Fu, C. H. Y. (2009). Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE, 4, e6353.CrossRefGoogle ScholarPubMed
Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., … Kugel, H. (2012). Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry, 71, 286293.CrossRefGoogle ScholarPubMed
Delaveau, P., Jabourian, M., Lemogne, C., Guionnet, S., Bergouignan, L., & Fossati, P. (2011). Brain effects of antidepressants in major depression: A meta-analysis of emotional processing studies. Journal of Affective Disorders, 130, 6674.CrossRefGoogle ScholarPubMed
DeRubeis, R. J., Siegle, G. J., & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9, 788796.CrossRefGoogle ScholarPubMed
Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Buchel, C., & May, A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience, 26, 63146317.CrossRefGoogle ScholarPubMed
Drevets, W. C., Price, J. L., Simpson, J. R., Todd, R. D., Reich, T., Vannier, M., & Raichle, M. E. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386, 824827.CrossRefGoogle ScholarPubMed
Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13, 663681.CrossRefGoogle ScholarPubMed
Du, X., Mao, Y., Zhang, Q., Luo, Q. H., & Qiu, J. (2016). Short-term group cognitive behavior therapy contributes to recovery from mild depression: Evidence from functional and structural MRI. Psychiatry Research: Neuroimaging, 251, 5359.CrossRefGoogle ScholarPubMed
Duan, D., Tu, Y., Jiao, S., & Qin, W. (2011). The relevance between symptoms and magnetic resonance imaging analysis of the hippocampus of depressed patients given electro-acupuncture combined with Fluoxetine intervention – a randomized, controlled trial. Chinese Journal of Integrative Medicine, 17, 190199.CrossRefGoogle ScholarPubMed
Dukart, J., Regen, F., Kherif, F., Colla, M., Bajbouj, M., Heuser, I., … Draganski, B. (2014). Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proceedings of the National Academy of Sciences of the USA, 111, 11561161.CrossRefGoogle ScholarPubMed
Franklin, G., Carson, A. J., & Welch, K. A. (2016). Cognitive behavioural therapy for depression: Systematic review of imaging studies. Acta Neuropsychiatrica, 28, 6174.CrossRefGoogle ScholarPubMed
Fu, C. H. Y., Costafreda, S. G., Sankar, A., Adams, T. M., Rasenick, M. M., Liu, P., … Marangell, L. B. (2015). Multimodal functional and structural neuroimaging investigation of major depressive disorder following treatment with duloxetine. BMC Psychiatry, 15, 82.CrossRefGoogle ScholarPubMed
Fu, C. H. Y., Steiner, H., & Costafreda, S. G. (2013). Predictive neural biomarkers of clinical response in depression: A meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiology of Disease, 52, 7583.CrossRefGoogle ScholarPubMed
Fu, C. H. Y., Williams, S. C. R., Cleare, A. J., Scott, J., Mitterschiffthaler, M. T., Walsh, N. D., … Murray, R. M. (2008). Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biological Psychiatry, 64, 505512.CrossRefGoogle ScholarPubMed
Fujino, J., Yamasaki, N., Miyata, J., Sasaki, H., Matsukawa, N., Takemura, A., … Murai, T. (2015). Anterior cingulate volume predicts response to cognitive behavioral therapy in major depressive disorder. Journal of Affective Disorders, 174, 397399.CrossRefGoogle ScholarPubMed
Gaynes, B. N., Warden, D., Trivedi, M. H., Wisniewski, S. R., Fava, M., & Rush, A. J. (2009). What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatric Services, 60, 14391445.CrossRefGoogle ScholarPubMed
Gbyl, K., & Videbech, P. (2018). Electroconvulsive therapy increases brain volume in major depression: A systematic review and meta-analysis. Acta Psychiatrica Scandinavica, 138, 180195.CrossRefGoogle ScholarPubMed
Gong, Q., Wu, Q., Scarpazza, C., Lui, S., Jia, Z., Marquand, A., … Mechelli, A. (2011). Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage, 55, 14971503.CrossRefGoogle ScholarPubMed
Gould, E. (2007). How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience, 8, 481488.CrossRefGoogle ScholarPubMed
Gryglewski, G., Baldinger-Melich, P., Seiger, R., Godbersen, G. M., Michenthaler, P., Klöbl, M., … Frey, R. (2019). Structural changes in amygdala nuclei, hippocampal subfields and cortical thickness following electroconvulsive therapy in treatment-resistant depression: Longitudinal analysis. The British Journal of Psychiatry, 214, 159167.CrossRefGoogle ScholarPubMed
Haq, A. U., Sitzmann, A. F., Goldman, M. L., Maixner, D. F., & Mickey, B. J. (2015). Response of depression to electroconvulsive therapy: A meta-analysis of clinical predictors. The Journal of Clinical Psychiatry, 76, 13741384.CrossRefGoogle ScholarPubMed
Inkster, B., Rao, A. W., Ridler, K., Nichols, T. E., Saemann, P. G., Auer, D. P., … & Matthews, P. M. (2011). Structural brain changes in patients with recurrent major depressive disorder presenting with anxiety symptoms. Journal of Neuroimaging, 21, 375382.CrossRefGoogle ScholarPubMed
Iscan, Z., Jin, T. B., Kendrick, A., Szeglin, B., Lu, H., Trivedi, M., … & Delorenzo, C. (2015). Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Human Brain Mapping, 36, 34723485.CrossRefGoogle ScholarPubMed
Jiang, R., Abbott, C. C., Jiang, T., Du, Y., Espinoza, R., Narr, K. L., … Calhoun, V. D. (2018). SMRI biomarkers predict electroconvulsive treatment outcomes: Accuracy with independent data sets. Neuropsychopharmacology, 43, 10781087.CrossRefGoogle ScholarPubMed
Jorgensen, A., Magnusson, P., Hanson, L. G., Kirkegaard, T., Benveniste, H., Lee, H., … Jorgensen, M. B. (2016). Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatrica Scandinavica, 133, 154164.CrossRefGoogle ScholarPubMed
Joshi, S. H., Espinoza, R. T., Pirnia, T., Shi, J., Wang, Y., Ayers, B., … Narr, K. L. (2016). Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biological Psychiatry, 79, 282292.CrossRefGoogle ScholarPubMed
Jung, J., Kang, J., Won, E., Nam, K., Lee, M. S., Tae, W. S., & Ham, B. J. (2014). Impact of lingual gyrus volume on antidepressant response and neurocognitive functions in major depressive disorder: A voxel-based morphometry study. Journal of Affective Disorders, 169, 179187.CrossRefGoogle ScholarPubMed
Kong, L., Wu, F., Tang, Y., Ren, L., Kong, D., Liu, Y., … Wang, F. (2014). Frontal-subcortical volumetric deficits in single episode, medication-naïve depressed patients and the effects of 8 weeks fluoxetine treatment: A VBM-DARTEL study. PLoS ONE, 9, e79055.CrossRefGoogle ScholarPubMed
Koolschijn, P. C. M. P., van Haren, N. E. M., Lensvelt-Mulders, G. J. L. M., Hulshoff Pol, H. E., & Kahn, R. S. (2009). Brain volume abnormalities in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Human Brain Mapping, 30, 37193735.CrossRefGoogle ScholarPubMed
Korgaonkar, M. S., Rekshan, W., Gordon, E., Rush, A. J., Williams, L. M., Blasey, C., & Grieve, S. M. (2015). Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder. EBioMedicine, 2, 3745.CrossRefGoogle ScholarPubMed
Lai, C.-H., & Hsu, Y.-Y. (2011). A subtle grey-matter increase in first-episode, drug-naive major depressive disorder with panic disorder after 6 weeks’ duloxetine therapy. International Journal of Neuropsychopharmacology, 14, 225235.CrossRefGoogle ScholarPubMed
Li, C.-T., Lin, C.-P., Chou, K.-H., Chen, I.-Y., Hsieh, J.-C., Wu, C.-L., … Su, T.-P. (2010). Structural and cognitive deficits in remitting and non-remitting recurrent depression: A voxel-based morphometric study. NeuroImage, 50, 347356.CrossRefGoogle ScholarPubMed
Liao, Y.-L., Wang, P.-S., Lu, C.-F., Hung, C.-I., Li, C.-T., Lin, C.-P., … Wu, Y.-T. (2013). Cortical shape and curvedness analysis of structural deficits in remitting and non-remitting depression. PLoS ONE, 8, e68625.CrossRefGoogle ScholarPubMed
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., … Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6, e1000100.CrossRefGoogle ScholarPubMed
Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., … Chen, H. (2012). Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS ONE, 7, e40968.CrossRefGoogle ScholarPubMed
MacQueen, G. M., Campbell, S., McEwen, B. S., Macdonald, K., Amano, S., Joffe, R. T., … Young, L. T. (2003). Course of illness, hippocampal function, and hippocampal volume in major depression. Proceedings of the National Academy of Sciences of the USA, 100, 13871392.CrossRefGoogle ScholarPubMed
MacQueen, G. M., Yucel, K., Taylor, V. H., Macdonald, K., & Joffe, R. (2008). Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biological Psychiatry, 64, 880883.CrossRefGoogle ScholarPubMed
Madsen, T. M., Treschow, A., Bengzon, J., Bolwig, T. G., Lindvall, O., & Tingström, A. (2000). Increased neurogenesis in a model of electroconvulsive therapy. Biological Psychiatry, 47, 10431049.CrossRefGoogle Scholar
Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. The Journal of Neuroscience, 20, 91049110.CrossRefGoogle ScholarPubMed
Mayberg, H. S. (2003). Modulating dysfunctional limbic-cortical circuits in depression: Towards development of brain-based algorithms for diagnosis and optimised treatment. British Medical Bulletin, 65, 193207.CrossRefGoogle ScholarPubMed
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6, e1000097.CrossRefGoogle ScholarPubMed
Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., … Lopez, A. D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 21972223.CrossRefGoogle ScholarPubMed
Nickl-Jockschat, T., Palomero Gallagher, N., Kumar, V., Hoffstaedter, F., Brügmann, E., Habel, U., … Grözinger, M. (2016). Are morphological changes necessary to mediate the therapeutic effects of electroconvulsive therapy? European Archives of Psychiatry and Clinical Neuroscience, 266, 261267.CrossRefGoogle ScholarPubMed
Nordanskog, P., Larsson, M. R., Larsson, E.-M., & Johanson, A. (2014). Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatrica Scandinavica, 129, 303311.CrossRefGoogle ScholarPubMed
Oltedal, L., Narr, K. L., Abbott, C., Anand, A., Argyelan, M., Bartsch, H., … Dale, A. M. (2018). Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biological Psychiatry, 84, 574581.CrossRefGoogle ScholarPubMed
Opel, N., Redlich, R., Zwanzger, P., Grotegerd, D., Arolt, V., Heindel, W., … Dannlowski, U. (2014). Hippocampal atrophy in major depression: A function of childhood maltreatment rather than diagnosis? Neuropsychopharmacology, 39, 27232731.CrossRefGoogle ScholarPubMed
Ota, M., Noda, T., Sato, N., Okazaki, M., Ishikawa, M., Hattori, K., … Kunugi, H. (2015). Effect of electroconvulsive therapy on gray matter volume in major depressive disorder. Journal of Affective Disorders, 186, 186191.CrossRefGoogle ScholarPubMed
Perera, T. D., Dwork, A. J., Keegan, K. A., Thirumangalakudi, L., Lipira, C. M., Joyce, N., … Coplan, J. D. (2011). Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS ONE, 6, e17600.CrossRefGoogle ScholarPubMed
Phillips, J. L., Batten, L. A., Tremblay, P., Aldosary, F., & Blier, P. (2015a). A prospective, longitudinal study of the effect of remission on cortical thickness and hippocampal volume in patients with treatment-resistant depression. International Journal of Neuropsychopharmacology, 18, 19.CrossRefGoogle Scholar
Phillips, M. L., Chase, H. W., Sheline, Y. I., Etkin, A., Almeida, J. R. C., Deckersbach, T., & Trivedi, M. H. (2015b). Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: Neuroimaging approaches. The American Journal of Psychiatry, 172, 124138.CrossRefGoogle Scholar
Piccinni, A., Del Debbio, A., Medda, P., Bianchi, C., Roncaglia, I., Veltri, A., … Dell'Osso, L. (2009). Plasma brain-derived neurotrophic factor in treatment-resistant depressed patients receiving electroconvulsive therapy. European Neuropsychopharmacology, 19, 349355.CrossRefGoogle ScholarPubMed
Pillay, S. S., Renshaw, P. F., Bonello, C. M., Lafer, B. C., Fava, M., & Yurgelun-Todd, D. (1998). A quantitative magnetic resonance imaging study of caudate and lenticular nucleus gray matter volume in primary unipolar major depression: Relationship to treatment response and clinical severity. Psychiatry Research: Neuroimaging, 84, 6174.CrossRefGoogle ScholarPubMed
Pirnia, T., Joshi, S. H., Leaver, A. M., Vasavada, M., Njau, S., Woods, R. P., … Narr, K. L. (2016). Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Translational Psychiatry, 6, e832.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36, 183206.CrossRefGoogle ScholarPubMed
Qiu, H., Li, X., Zhao, W., Du, L., Huang, P., Fu, Y., … Luo, Q. (2016). Electroconvulsive therapy-induced brain structural and functional changes in major depressive disorders: A longitudinal study. Medical Science Monitor, 22, 45774586.CrossRefGoogle ScholarPubMed
Rami-Gonzalez, L., Bernardo, M., Boget, T., Salamero, M., Gil-Verona, J. A., & Junque, C. (2001). Subtypes of memory dysfunction associated with ECT: Characteristics and neurobiological bases. Journal of ECT, 17, 129135.CrossRefGoogle ScholarPubMed
Redlich, R., Bürger, C., Dohm, K., Grotegerd, D., Opel, N., Zaremba, D., … Dannlowski, U. (2017). Effects of electroconvulsive therapy on amygdala function in major depression – a longitudinal functional magnetic resonance imaging study. Psychological Medicine, 47, 21662176.CrossRefGoogle ScholarPubMed
Redlich, R., Opel, N., Grotegerd, D., Dohm, K., Zaremba, D., Bürger, C., … Dannlowski, U. (2016). Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry, 73, 557564.CrossRefGoogle ScholarPubMed
Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive mechanisms of treatment in depression. Neuropsychopharmacology, 37, 117136.CrossRefGoogle ScholarPubMed
Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Nierenberg, A. A., Stewart, J. W., Warden, D., … Fava, M. (2006). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. American Journal of Psychiatry, 163, 19051917.CrossRefGoogle ScholarPubMed
Sackeim, H. A., Prudic, J., Fuller, R., Keilp, J., Lavori, P. W., & Olfson, M. (2007). The cognitive effects of electroconvulsive therapy in community settings. Neuropsychopharmacology, 32, 244254.CrossRefGoogle ScholarPubMed
Sämann, P. G., Höhn, D., Chechko, N., Kloiber, S., Lucae, S., Ising, M., … Czisch, M. (2013). Prediction of antidepressant treatment response from gray matter volume across diagnostic categories. European Neuropsychopharmacology, 23, 15031515.CrossRefGoogle ScholarPubMed
Sambataro, F., Doerig, N., Hänggi, J., Wolf, R. C., Brakowski, J., Grosse Holtforth, M., … Spinelli, S. (2018). Anterior cingulate volume predicts response to psychotherapy and functional connectivity with the inferior parietal cortex in major depressive disorder. European Neuropsychopharmacology, 28, 138148.CrossRefGoogle ScholarPubMed
Santarelli, L., Saxe, M., Cross, C., Surget, A., Battaglia, F., Dulawa, S., … Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805809.CrossRefGoogle ScholarPubMed
Sartorius, A., Demirakca, T., Böhringer, A., Clemm von Hohenberg, C., Aksay, S. S., Bumb, J. M., … Ende, G. (2016). Electroconvulsive therapy increases temporal gray matter volume and cortical thickness. European Neuropsychopharmacology, 26, 506517.CrossRefGoogle ScholarPubMed
Schermuly, I., Wolf, D., Lieb, K., Stoeter, P., & Fellgiebel, A. (2011). State dependent posterior hippocampal volume increases in patients with major depressive disorder. Journal of Affective Disorders, 135, 405409.CrossRefGoogle ScholarPubMed
Schmaal, L., Hibar, D. P., Sämann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., … Veltman, D. J. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22, 900909.CrossRefGoogle ScholarPubMed
Semkovska, M., & McLoughlin, D. M. (2010). Objective cognitive performance associated with electroconvulsive therapy for depression: A systematic review and meta-analysis. Biological Psychiatry, 68, 568577.CrossRefGoogle ScholarPubMed
Siegle, G. J., Thompson, W. K., Collier, A., Berman, S. R., Feldmiller, J., Thase, M. E., & Friedman, E. S. (2012). Toward clinically useful neuroimaging in depression treatment. Archives of General Psychiatry, 69, 913924.CrossRefGoogle ScholarPubMed
Smith, R., Chen, K., Baxter, L., Fort, C., & Lane, R. D. (2013). Antidepressant effects of sertraline associated with volume increases in dorsolateral prefrontal cortex. Journal of Affective Disorders, 146, 414419.CrossRefGoogle ScholarPubMed
Smith, R., Chen, K., Baxter, L., Fort, C., & Lane, R. D. (2014). Corrigendum to ‘Antidepressant effects of sertraline associated with volume increases in dorsolateral prefrontal cortex’ [J. Affect. Disord. 146 (2013) 414–419]. Journal of Affective Disorders, 162, 114115.CrossRefGoogle Scholar
Stratmann, M., Konrad, C., Kugel, H., Krug, A., Schöning, S., Ohrmann, P., … Dannlowski, U. (2014). Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. PLoS ONE, 9, e102692.CrossRefGoogle ScholarPubMed
Surget, A., Tanti, A., Leonardo, E. D., Laugeray, A., Rainer, Q., Touma, C., … Belzung, C. (2011). Antidepressants recruit new neurons to improve stress response regulation. Molecular Psychiatry, 16, 11771188.CrossRefGoogle ScholarPubMed
Takamiya, A., Plitman, E., Chung, J. K., Chakravarty, M., Graff-Guerrero, A., Mimura, M., & Kishimoto, T. (2019). Acute and long-term effects of electroconvulsive therapy on human dentate gyrus. Neuropsychopharmacology, 44, 18051811.CrossRefGoogle ScholarPubMed
ten Doesschate, F., van Eijndhoven, P., Tendolkar, I., van Wingen, G. A., & van Waarde, J. A. (2014). Pre-treatment amygdala volume predicts electroconvulsive therapy response. Frontiers in Psychiatry, 5, 17.CrossRefGoogle ScholarPubMed
Tendolkar, I., van Beek, M., van Oostrom, I., Mulder, M., Janzing, J., Voshaar, R. O., & van Eijndhoven, P. (2013). Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression: A longitudinal pilot study. Psychiatry Research: Neuroimaging, 214, 197203.CrossRefGoogle ScholarPubMed
Thomann, P. A., Wolf, R. C., Nolte, H. M., Hirjak, D., Hofer, S., Seidl, U., … Wüstenberg, T. (2017). Neuromodulation in response to electroconvulsive therapy in schizophrenia and major depression. Brain Stimulation, 10, 637644.CrossRefGoogle ScholarPubMed
Vakili, K., Pillay, S. S., Lafer, B., Fava, M., Renshaw, P. F., Bonello-Cintron, C. M., & Yurgelun-Todd, D. A. (2000). Hippocampal volume in primary unipolar major depression: A magnetic resonance imaging study. Biological Psychiatry, 47, 10871090.CrossRefGoogle ScholarPubMed
van Eijndhoven, P., Mulders, P., Kwekkeboom, L., van Oostrom, I., van Beek, M., Janzing, J., … Tendolkar, I. (2016). Bilateral ECT induces bilateral increases in regional cortical thickness. Translation Psychiatry, 6, e874.CrossRefGoogle ScholarPubMed
van Oostrom, I., van Eijndhoven, P., Butterbrod, E., van Beek, M. H., Janzig, J., Donders, R., … Tendolkar, I. (2018). Decreased cognitive functioning after electroconvulsive therapy is related to increased hippocampal volume: Exploring the role of brain plasticity. The Journal of ECT, 34, 117123.CrossRefGoogle ScholarPubMed
Varnäs, K., Halldin, C., & Hall, H. (2004). Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Human Brain Mapping, 22, 246260.CrossRefGoogle ScholarPubMed
Vythilingam, M., Vermetten, E., Anderson, G. M., Luckenbaugh, D., Anderson, E. R., Snow, J., … Bremner, J. D. (2004). Hippocampal volume, memory, and cortisol status in major depressive disorder: Effects of treatment. Biological Psychiatry, 56, 101112.CrossRefGoogle ScholarPubMed
Wade, B. S. C., Joshi, S. H., Njau, S., Leaver, A. M., Vasavada, M., Woods, R. P., … Narr, K. L. (2016). Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology, 41, 24812491.CrossRefGoogle ScholarPubMed
Warden, D., Rush, A. J., Trivedi, M. H., Fava, M., & Wisniewski, S. R. (2007). The STAR*D project results: A comprehensive review of findings. Current Psychiatry Reports, 9, 449459.CrossRefGoogle Scholar
Webb, C. A., Olson, E. A., Killgore, W. D. S., Pizzagalli, D. A., Rauch, S. L., & Rosso, I. M. (2018). Rostral anterior cingulate cortex morphology predicts treatment response to internet-based CBT for depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 255262.Google Scholar
Wilkinson, S. T., Sanacora, G., & Bloch, M. H. (2017). Hippocampal volume changes following electroconvulsive therapy: A systematic review and meta-analysis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 327335.Google ScholarPubMed
Willner, P., Scheel-Krüger, J., & Belzung, C. (2013). The neurobiology of depression and antidepressant action. Neuroscience and Biobehavioral Reviews, 37, 23312371.CrossRefGoogle ScholarPubMed
Wittchen, H. U., & Jacobi, F. (2005). Size and burden of mental disorders in Europe – a critical review and appraisal of 27 studies. European Neuropsychopharmacology, 15, 357376.CrossRefGoogle ScholarPubMed
Wolf, R. C., Nolte, H. M., Hirjak, D., Hofer, S., Seidl, U., Depping, M. S., … Thomann, P. A. (2016). Structural network changes in patients with major depression and schizophrenia treated with electroconvulsive therapy. European Neuropsychopharmacology, 26, 14651474.CrossRefGoogle ScholarPubMed
Wonderlick, J. S., Ziegler, D. A., Hosseini-Varnamkhasti, P., Locascio, J. J., Bakkour, A., van der Kouwe, A., … Dickerson, B. C. (2009). Reliability of MRI-derived cortical and subcortical morphometric measures: Effects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage, 44, 13241333.CrossRefGoogle ScholarPubMed
Yoshimura, S., Okamoto, Y., Onoda, K., Matsunaga, M., Okada, G., Kunisato, Y., … Yamawaki, S. (2014). Cognitive behavioral therapy for depression changes medial prefrontal and ventral anterior cingulate cortex activity associated with self-referential processing. Social Cognitive and Affective Neuroscience, 9, 487493.CrossRefGoogle ScholarPubMed
Yrondi, A., Péran, P., Sauvaget, A., Schmitt, L., & Arbus, C. (2018). Structural – functional brain changes in depressed patients during and after electroconvulsive therapy. Acta Neuropsychiatrica, 30, 1728.CrossRefGoogle ScholarPubMed
Zaremba, D., Enneking, V., Meinert, S., Förster, K., Bürger, C., Dohm, K., … Dannlowski, U. (2018). Effects of cumulative illness severity on hippocampal gray matter volume in major depression: A voxel-based morphometry study. Psychological Medicine, 48, 23912398.CrossRefGoogle ScholarPubMed