Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T00:17:07.717Z Has data issue: false hasContentIssue false

The anatomy of melancholia: does frontal-subcortical pathophysiology underpin its psychomotor and cognitive manifestations?1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1995

References

Albert, M. L. (1978). Subcortical dementia. In Alzheimer's Disease: Senile Dementia and Related Disorders (ed Katzman, R., Terry, R. D. and Birch, K. L.), pp. 173180. Raven Press: New York.Google Scholar
Albert, M. L., Feldman, R. G. & Willis, A. L. (1974). The ‘subcortical dementia’ of progressive supranuclear palsy. Journal of Neurology, Neurosurgery & Psychiatry 37, 121130.CrossRefGoogle ScholarPubMed
Alexander, G. E. & De Long, M. R. (1985). Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. Journal of Neurophysiology 53, 14171430.CrossRefGoogle ScholarPubMed
Alexander, G. E., De Long, M. R. & Strick, P. L. (1986). Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience 9, 357381.CrossRefGoogle ScholarPubMed
Alexander, G. E., Crutcher, M. D. & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Progress in Brain Research 85, 119146.CrossRefGoogle ScholarPubMed
Anisman, H., Irwin, J. & Sklar, L. S. (1979). Deficits of escape performance following catecholamine depletion: implications for behavioural deficits induced by uncontrollable stress. Psychopharmacology 64, 163170.CrossRefGoogle ScholarPubMed
Austin, M.-P., Ross, M., Murray, C., O'Carroll, R. E., Ebmeier, K. P. & Goodwin, G. M. (1992 a). Cognitive function in major depression. Journal of Affective Disorders 25, 2130.CrossRefGoogle ScholarPubMed
Austin, M.-P., Dougall, N., Ross, M., Murray, C., O'Carroll, R. E., Moffoot, A., Ebmeier, K. P. & Goodwin, G. M. (1992 b). Single photon emission tomography with 99mTc-exametazime in major depression and the pattern of brain activity underlying the psychotic/neurotic continuum. Journal of Affective Disorders 26, 3144.CrossRefGoogle ScholarPubMed
Baxter, L. R., Phelps, M. E., Mazziotta, J. C., Schwartz, J. M., Gerner, R. H., Selin, C. E. & Sumida, R. M. (1985). Cerebral metabolic rates for glucose in mood disorders. Archives of General Psychiatry 42, 441447.CrossRefGoogle ScholarPubMed
Baxter, L. R., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Selin, C. E., Gerner, R. H. & Selin, C. E. (1989). Reduction of prefrontal cortex glucose metabolism common to three types of depression. Archives of General Psychiatry 46, 243250.CrossRefGoogle ScholarPubMed
Bench, C. J., Friston, K. M., Brown, R. G., Scott, L. C., Frackowiak, S. J. & Dolan, R. J. (1992). The anatomy of melancholia – focal abnormalities of cerebral blood flow in major depression. Psychological Medicine 22, 606615.CrossRefGoogle ScholarPubMed
Bench, C. J., Dolan, R. J., Friston, K. J. & Frackowiak, R. S. J. (1993). State and trait abnormalities of regional cerebral blood in depression determined by positron emission tomography. Journal of Cerebral Blood Flow and Metabolism 13, 503.Google Scholar
Boyd, J. L., Cruickshank, C. A., Kenn, C. W., Madeley, P., Mindham, R. H. S., Oswald, A. G., Smith, R. J. & Spokes, E. G. S. (1991). Cognitive impairment and dementia in Parkinson's disease: a controlled study. Psychological Medicine 21, 911–321.CrossRefGoogle ScholarPubMed
Brand, A. N., Jolles, J. & Gispen-de Wied, C. (1992). Recall and recognition memory deficits in depression. Journal of Affective Disorders 25, 7786.CrossRefGoogle ScholarPubMed
Brown, R. G. & Marsden, C. D. (1988). ‘Subcortical Dementia’: the neuropsychological evidence. Neuroscience 25, 363387.CrossRefGoogle ScholarPubMed
Brown, F. W., Lewine, R. J., Hudgins, P. A. & Risch, S. C. (1992). White matter hyperintensity signals in psychiatric and non-psychiatric subjects. American Journal of Psychiatry 149, 620625.Google Scholar
Buchsbaum, M. S., Wu, J., De Lisi, L. E., Holcomb, H., Kessler, R., Johnson, J., King, A. C., Hazlett, E., Langston, K. & Post, R. M. (1986). Frontal cortex and basal ganglia metabolic rates assessed by Positron Emission Tomography with [18F]2-deoxyglucose in affective illness. Journal of Affective Disorders 10, 137152.CrossRefGoogle ScholarPubMed
Byrne, D. G. (1977). Choice reaction times in depressive states. British Journal of Social and Clinical Psychology 15, 149156.CrossRefGoogle Scholar
Carney, M. W. P., Roth, M. & Garside, R. F. (1965). The diagnosis of depressive syndrome and the prediction of ECT response. British Journal of Psychiatry 111, 659674.CrossRefGoogle Scholar
Carpenter, W. T. Jr, Buchanan, R. W., Kirkpatrick, B., Tamminga, C. & Wood, F. (1993). Strong inference, theory testing, and the neuroanatomy of schizophrenia. Archives of General Psychiatry 50, 825831.CrossRefGoogle ScholarPubMed
Cassens, G., Wolfe, L. & Zola, M. (1990). The neuropsychology of depressions. Neuropsychology Update Series 2, 202212.Google ScholarPubMed
Channon, S., Baker, J. E. & Robertson, M. M. (1993). Working memory in clinical depression: an experimental study. Psychological Medicine 23, 8791.CrossRefGoogle ScholarPubMed
Coffey, C. E., Gigiel, G. S., Djang, W. T. & Weiner, R. D. (1990). Subcortical hyperintensity on magnetic resonance imaging: a comparison of normal and depressed elderly subjects. American Journal of Psychiatry 147, 187189.Google ScholarPubMed
Coffey, C. E., Wilkinson, W. E., Weinger, R. D., Parashos, I. A., Djand, W. T., Webb, M. C., Gigiel, G. S. & Spritzer, C. E. (1993). Quantitative cerebral anatomy in depression: a controlled magnetic resonance imaging study. Archives of General Psychiatry 50, 716.CrossRefGoogle ScholarPubMed
Cohen, R. M., Weingartner, H., Smallberg, S. A., Pickar, D. & Murphy, D. L. (1982). Effort and cognition in depression. Archives of General Psychiatry 39, 593598.CrossRefGoogle ScholarPubMed
Colonna, L., Petit, M. & Lepine, J. P. (1979). Bromocriptine in affective disorders: a pilot study. Journal of Affective Disorders 1, 173177.CrossRefGoogle ScholarPubMed
Cooper, J. A., Sagar, H. J., Jordan, N., Harvey, N. S. & Sullivan, E. V. (1991). Cognitive impairment in early, untreated Parkinson's Disease and its relationship to motor disability. Brain 114, 20952122.CrossRefGoogle ScholarPubMed
Cornell, D. G., Suarez, R. & Berent, S. (1984). Psychomotor retardation in melancholic and non-melancholic depression: cognitive and motor components. Journal of Abnormal Psychology 932, 150157.CrossRefGoogle Scholar
Cronholm, B. & Ottosson, J. (1961). Memory function in endogenous depression. Archives of General Psychiatry 5, 193197.CrossRefGoogle ScholarPubMed
Cummings, J. L. (1992). Depression and Parkinson's disease: a review. American Journal of Psychiatry 149, 443454.Google ScholarPubMed
Davis, K. L., Kahn, R. S., Ko, G. & Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. American Journal of Psychiatry 148, 14741486.Google ScholarPubMed
Delvenne, V., Delecluse, F., Hubain, P., Schoutens, A., De Maertelaer, V. & Mendlewicz, J. (1990). Regional cerebral blood flow in patients with affective disorders. British Journal of Psychiatry 157, 359365.CrossRefGoogle ScholarPubMed
Elsworth, J. D., Leahy, D. J., Roth, R. H. & Redmond, D. E. Jr, (1987). Homovanillic acid concentrations in brain, CSF and plasma as indicators of central dopamine function in primates. Journal of Neural Transmission 68, 5162.CrossRefGoogle ScholarPubMed
Evarts, E. V., Teravainen, H. & Calne, D. B. (1981). Reaction time in Parkinson's disease. Brain 104, 167186.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1982). Cytoarchitectonic heterogeneity of the primate neostriatum: subdivision into island and matrix cellular compartments. Journal of Comprehensive Neurology 205, 398413.CrossRefGoogle ScholarPubMed
Goodwin, F. K. & Sack, R. L. (1974). Central dopamine function in affective illness: evidence from precursors, enzyme inhibitors and studies of central dopamine turnover. In Neuropsychopharmacology of Monoamines and their Regulatory Enzymes (ed. Usdin, E.), pp. 73101. Raven Press: New York.Google Scholar
Goodwin, G. M., Austin, M.-P., Dougall, N., Ross, M., Murray, C., O'Carroll, R. E., Moffoot, A., Prentice, N. & Ebmeier, K. P. (1993). State changes in brain activity shown by the uptake of 99mTc-exametazime with single photon emission tomography in major depression before and after treatment. Journal of Affective Disorders 29, 243253.CrossRefGoogle ScholarPubMed
Graybiel, A. M. & Ragsdale, C. W. (1978). Histochemically distinct compartments in the striatum of human being, monkey and cat demonstrated by the acetylthiocholinesterase staining method. Proceedings National Academy of Science USA 75, 57235726.CrossRefGoogle Scholar
Hagman, J. O., Buchsbaum, M. S., Wu, J. C., Rao, S. J., Reynolds, C. A. & Blinder, B. J. (1990). Comparison of regional brain metabolism in bulimia nervosa and affective disorder assessed with positron emission tomography. Journal of Affective Disorders 19, 153162.CrossRefGoogle ScholarPubMed
Hart, R. P. & Kwentus, J. A. (1987). Psychomotor slowing and subcortical-type dysfunction in depression. Journal of Neurology, Neurosurgery and Psychiatry 50, 12631266.CrossRefGoogle ScholarPubMed
Henry, G. M., Weingartner, H. & Murphy, D. L. (1973). Influence of affective states and psychoactive drugs on verbal learning and memory. American Journal of Psychiatry 130, 966971.CrossRefGoogle ScholarPubMed
Holcomb, H. H. (1985). Parkinsonism and depression: dopaminergic mediation of neuropathologic processes in human beings. In The Catecholamines in Psychiatric and Neurologic Disorders (ed. Lake, C. and Ziegler, M. G.), pp. 269282. Butterworths: Boston.CrossRefGoogle Scholar
Hurwitz, T. A., Clark, C., Murphy, E., Klonoff, H., Martin, W. R. W. & Pate, B. D. (1990). Regional cerebral glucose metabolism in major depressive disorder. Canadian Journal of Psychiatry 35, 684688.CrossRefGoogle ScholarPubMed
Kalil, K. (1978). Patch-like termination of thalamic fibers in the putamen of the rhesus monkey: an autoradiographic study. Brain Research 140, 333339.CrossRefGoogle ScholarPubMed
Kapur, S. & Mann, J. (1992). Role of the dopaminergic system in depression. Biological Psychiatry 32, 117.CrossRefGoogle ScholarPubMed
Kendell, R. E. (1968). The Classification of Depressive Illness. Oxford University Press: London.Google Scholar
Kiloh, L. G. (1961). Pseudo-dementia. Acta Psychiatrica Scandinavica. 37 336351.CrossRefGoogle ScholarPubMed
Krishnan, K. R. (1993). Neuroanatomic substrates of depression in the elderly. Journal of Geriatric Psychiatry and Neurology 6, 3958.CrossRefGoogle ScholarPubMed
Krishnan, K. R., McDonald, K., Escalona, W. M., Doraiswamy, P. M., Na, C., Husain, M. M., Figiel, G. S., Boyko, O. B., Ellinwood, E. H. & Nemeroff, C. B. (1992). Magnetic resonance imaging of the caudate nuclei in depression. Archives of General Psychiatry 49, 553557.CrossRefGoogle ScholarPubMed
Kunzle, H. (1975). Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Research 88, 1995–209.CrossRefGoogle Scholar
Laplane, D., Levasseur, M., Pillon, B., Dubois, B., Baulac, M., Mazoyer, B., Dinh, S. T., Sett, G., Danze, F. & Baron, J. C. (1989). Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. Brain 112, 699725.CrossRefGoogle ScholarPubMed
Levin, B. E., Tomer, R. & Rey, G. J. (1992). Cognitive impairments in Parkinson's disease. Neurologic Clinics 10, 471485.CrossRefGoogle ScholarPubMed
Mahendra, B. (1985). Depression and dementia. Psychological Medicine 15, 227236.CrossRefGoogle Scholar
Martinot, J., Hardy, P., Feline, A., Huret, J.-D., Mazoyer, B., Attar-Levy, D., Pappata, S. & Syrota, A. (1990). Left prefrontal glucose hypometabolism in the depressed state: a confirmation. American Journal of Psychiatry 147, 13131317.Google ScholarPubMed
Mendez, M., Adams, N. L. & Skoog Lewandowski, K. (1989). Neurobehavioral changes associated with caudate lesions. Neurology 39, 349354.CrossRefGoogle ScholarPubMed
Murphy, D. L., Henry, G. M. & Weingartner, H. (1972). Catecholamines and memory: enhanced verbal learning during l-DOPA administration. Psychopharmacologia 27, 319326.CrossRefGoogle ScholarPubMed
Nelson, J. C. & Charney, D. S. (1981). The symptoms of major depressive illness. American Journal of Psychiatry 138, 113.Google ScholarPubMed
Parker, G., Hadzi-Pavlovic, D., Boyce, P., Wilhelm, K., Brodaty, H., Mitchell, P., Hickie, I. & Eyers, K. (1990). Classifying depression by mental state signs. British Journal of Psychiatry 157, 5565.CrossRefGoogle ScholarPubMed
Parker, G., Hadzi-Pavlovic, D., Wilhelm, K., Hickie, I., Brodaty, H., Boyce, P., Mitchell, P. & Eyers, K. (1994). Defining melancholia: properties of a refined sign-based measure. British Journal of Psychiatry 164, 316326.CrossRefGoogle ScholarPubMed
Pendleton Jones, B., Henderson, M. & Welch, C. A. (1987). Executive functions in unipolar depression before and after electroconvulsive therapy. International Journal of Neuroscience 38, 287297.CrossRefGoogle Scholar
Phillips, A. G. & Carr, G. D. (1987). Cognition and the basal ganglia: a possible substrate for procedural knowledge. Canadian Journal of Neurological Science 14, 381385.CrossRefGoogle ScholarPubMed
Phillips, A. G. & Fibiger, H. C. (1978). The role of dopamine in maintaining intracranial self-stimulation in the ventral tegmentum, nucleus accumbens, and prefrontal cortex. Canadian Journal of Psychology 32, 5866.CrossRefGoogle ScholarPubMed
Playford, E. D., Jenkins, I. H., Passingham, R. E., Nutt, J., Frackowiak, R. S. J. & Brooks, D. J. (1992). Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Annals of Neurology 32, 151161.CrossRefGoogle ScholarPubMed
Post, R. M., Gerner, R. H., Carman, J. S., Billin, C., Jimerson, D. C., Goodwin, F. K. & Bunney, W. E. (1978). Effects of a dopamine agonist piribedil in depressed patients. Archives of General Psychiatry 35, 609615.CrossRefGoogle ScholarPubMed
Rafal, R. D., Posner, M. I., Walker, J. A. & Friedrich, F. J. (1984). Cognition and the basal ganglia. Separating mental and motor components of performance in Parkinson's disease. Brain 107, 10831094.CrossRefGoogle ScholarPubMed
Rampello, L., Nicoletti, G. & Raffaele, R. (1991). Dopaminergic hypothesis for retarded depression: a symptom profile for predicting therapeutic responses. Acta Psychiatrica Scandinavica 84, 552554.CrossRefGoogle Scholar
Raskin, A., Friedman, A. S. & Di Mascio, A. (1982). Cognitive and performance deficits in depression. Psychopharmacology Bulletin 18, 196206.Google ScholarPubMed
Reus, V. I., Silberman, E., Post, R. M. & Weingartner, H. (1979). D-amphetamine: effects on memory in a depressed population. Biological Psychiatry 14, 345356.Google Scholar
Rogers, D., Lees, A. J., Trimble, M. & Stern, G. M. (1986). Concept of bradyphrenia: a neuropsychiatric approach. Advances in Neurology 45, 447450.Google Scholar
Roy-Byrne, P. P., Weingartner, H., Bierer, L. M., Thompson, K. & Post, R. M. (1986). Effortful and automatic cognitive processes in depression. Archives of General Psychiatry 43, 265267.CrossRefGoogle ScholarPubMed
Sackeim, H. A. & Prohovnik, I. (1993). Brain imaging studies of depressive disorders. In Biology of Depressive Disorders (ed Mann, J. J. and Kupfer, D. J.), pp. 205258. Plenum Press: New York.CrossRefGoogle Scholar
Sackeim, H. A., Prohovnik, I., Moeller, J. R., Brown, R. P., Apter, S., Prudic, J., Devand, D. P. & Mukherjee, S. (1990). Regional cerebral blood flow in mood disorders. I. Comparison of major depressives and normal controls at rest. Archives of General Psychiatry 47, 6070.CrossRefGoogle ScholarPubMed
Sherman, A. D., Sacquitine, J. L. & Petty, F. (1982). Specifity of the learned helplessness model of depression. Pharmacology, Biochemistry and Behaviour 16, 449454.CrossRefGoogle ScholarPubMed
Silberman, E. K., Weingartner, H. & Post, R. M. (1983). Thinking disorder in depression. Archives of General Psychiatry 40, 775780.CrossRefGoogle ScholarPubMed
Sourkes, T. L. (1973). On the origin of homovanillic acid (HVA) in the cerebrospinal fluid. Journal of Neural Transmission 34, 153157.CrossRefGoogle ScholarPubMed
Starkstein, S. E., Preziosi, T. J., Berthier, M. L., Bolduc, P. L., Mayberg, H. S. & Robinson, R. G. (1989). Depression and cognitive impairment in Parkinson's disease. Brain 112, 11411153.CrossRefGoogle ScholarPubMed
Sternberg, D. E. & Jarvik, M. E. (1976). Memory functions in depression. Archives of General Psychiatry 33, 219224.CrossRefGoogle ScholarPubMed
Stoudemire, A., Hill, C., Gulley, L. R. & Morris, R. (1989). Neuropsychological and biomedical assessment of depression-dementia syndromes. Journal of Neuropsychiatry 1, 347361.Google ScholarPubMed
Strange, P. G. (1993). Dopamine receptors in the basal ganglia: relevance to Parkinson's disease. Movement Disorders 8, 263270.CrossRefGoogle ScholarPubMed
Stromgren, L. S. (1977). The influence of depression on memory. Acta Psychiatrica Scandinanica 56, 109128.CrossRefGoogle ScholarPubMed
Taylor, A. E., Saint-Cyr, J. A. & Lang, A. E. (1986). Frontal lobe dysfunction in Parkinson's disease. Brain 109, 845883.CrossRefGoogle ScholarPubMed
Torack, R. M. & Morris, J. C. (1988). The association of ventral tegmental area histopathology with adult dementia. Archives of Neurology 45, 497501.CrossRefGoogle ScholarPubMed
van Kammen, D. P. & Murphy, D. L. (1975). Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacologia (Berlin), 44, 215224.CrossRefGoogle ScholarPubMed
van Praag, H. M., Korf, J., Lakke, J. P. W. F. & Schut, T. (1975). Dopamine metabolising in depression, psychoses and Parkinson's disease: the problem of specificity of biological variables in behaviour disorders. Psychological Medicine 5, 138146.CrossRefGoogle Scholar
van Scheyen, J. D., Van Praag, H. M. & Korf, J. (1977). Controlled study comparing nomifensine and clomipramine in unipolar depression, using the probenicid technique. British Journal of Psychiatry, 4, 179S184S.Google Scholar
Weingartner, H., Cohen, R. M., Murphy, D. L., Martello, J. & Gerdt, C. (1981). Cognitive processes in depression. Archives of General Psychiatry 38, 4247.CrossRefGoogle ScholarPubMed
Weingartner, H., Burns, S., Diebel, R. & Le Witt, P. A. (1984). Cognitive impairments in Parkinson's disease: distinguishing between effort-demanding and automatic cognitive processes. Psychiatry Research 11, 223235.CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F., Iadarola, M., Driesen, N. & Zec, R. F. (1988). Prefrontal cortical blood flow and cognitive function in Huntington's Disease. Journal of Neurology, Neurosurgery, and Psychiatry 51, 94104.CrossRefGoogle ScholarPubMed
Widlöcher, D. J. (1983). Psychomotor retardation: clinical, theoretical and psychometric aspects. Psychiatric Clinics North America 6, 2740.CrossRefGoogle ScholarPubMed
Willner, P., Muscat, R., Papp, M. & Sampson, D. (1991). Dopamine, depression and anti-depressant drugs. In The Mesolimbic Dopamine System: From Motivation to Action (ed. Willner, P. and Scheel-Kruger, J.), pp. 387410. John Wiley & Sons: New York.Google Scholar
Wolfe, J., Granholm, E., Butters, N., Saunders, E. & Janowski, D. (1987). Verbal memory deficits associated with major affective disorders: a comparison of unipolar and bipolar patients. Journal of Affective Disorders 13, 8392.CrossRefGoogle ScholarPubMed