Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T00:12:44.715Z Has data issue: false hasContentIssue false

Altered effective connectivity from the pregenual anterior cingulate cortex to the laterobasal amygdala mediates the relationship between internet gaming disorder and loneliness

Published online by Cambridge University Press:  20 July 2020

Min Wang
Affiliation:
Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
Ningning Zeng
Affiliation:
Department of Psychology, Zhejiang Normal University, Jinhua, PR, China
Hui Zheng
Affiliation:
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR, China
Xiaoxia Du
Affiliation:
Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, PR, China
Marc N. Potenza
Affiliation:
Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA Department of Neuroscience, Yale University, New Haven, CT, USA Connecticut Council on Problem Gambling, Wethersfield, CT, USA Connecticut Mental Health Center, New Haven, CT, USA
Guang-Heng Dong*
Affiliation:
Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR, China
*
Author for correspondence: Guang-Heng Dong, E-mail: [email protected]

Abstract

Background

Individual with internet gaming disorder (IGD) often experience a high level of loneliness, and neuroimaging studies have demonstrated that amygdala function is associated with both IGD and loneliness. However, the neurobiological basis underlying these relationships remains unclear.

Methods

In the current study, Granger causal analysis was performed to investigate amygdalar subdivision-based resting-state effective connectivity differences between 111 IGD subjects and 120 matched participants with recreational game use (RGUs). We further correlated neuroimaging findings with clinical measures. Mediation analysis was conducted to explore whether amygdalar subdivision-based effective connectivity mediated the relationship between IGD severity and loneliness.

Results

Compared with RGUs, IGD subjects showed inhibitory effective connections from the left pregenual anterior cingulate cortex (pACC) to the left laterobasal amygdala (LBA) and from the right medial prefrontal cortex (mPFC) to the left LBA, as well as an excitatory effective connection from the left middle prefrontal gyrus (MFG) to the right superficial amygdala. Further analyses demonstrated that the left pACC-left LBA effective connection was negatively correlated with both Internet Addiction Test and UCLA Loneliness scores, and it mediated the relationship between the two.

Conclusion

IGD subjects and RGUs showed different connectivity patterns involving amygdalar subdivisions. These findings support a neurobiological mechanism for the relationship between IGD and loneliness, and suggest targets for therapeutic approaches that could be used to treat IGD.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrithen, A. A., & Singleton, E. G. (2015). Brief Arabic tobacco craving questionnaire: An investigation into craving and heavy smoking in Saudi Arabian males. Journal of Family & Community Medicine, 22(1), 812. doi: 10.4103/2230-8229.149573CrossRefGoogle ScholarPubMed
Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N. J., … Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anatomy and Embryology, 210(5-6), 343352. doi: 10.1007/s00429-005-0025-5CrossRefGoogle ScholarPubMed
APA. (2013). Diagnostic and statistical manual of mental disorders. Arlington: American Psychiatric Publishing.Google Scholar
Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 14581463. doi: 10.1038/nn1584CrossRefGoogle ScholarPubMed
Bonnaire, C., & Baptista, D. (2019). Internet gaming disorder in male and female young adults: The role of alexithymia, depression, anxiety and gaming type. Psychiatry Research, 272, 521530. doi: 10.1016/j.psychres.2018.12.158CrossRefGoogle ScholarPubMed
Brand, M., Wegmann, E., Stark, R., Muller, A., Wolfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience and Biobehavioral Reviews, 104, 110. doi: 10.1016/j.neubiorev.2019.06.032CrossRefGoogle ScholarPubMed
Chang, M. K., & Law, S. P. M. (2008). Factor structure for young's internet addiction test: A confirmatory study. Computers in Human Behavior, 24(6), 25972619. doi: 10.1016/j.chb.2008.03.001CrossRefGoogle Scholar
Chefer, V. I., Wang, R., & Shippenberg, T. S. (2011). Basolateral amygdala-driven augmentation of medial prefrontal Cortex GABAergic neurotransmission in response to environmental stimuli associated with cocaine administration. Neuropsychopharmacology, 36(10), 20182029. doi: 10.1038/npp.2011.89CrossRefGoogle ScholarPubMed
Choo, H., Gentile, D. A., Sim, T., Li, D., Khoo, A., & Liau, A. K. (2010). Pathological video-gaming among Singaporean youth. Annals Academy of Medicine Singapore, 39(11), 822829.CrossRefGoogle ScholarPubMed
Chun, J. W., Choi, J., Cho, H., Lee, S. K., & Kim, D. J. (2015). Dysfunction of the frontolimbic region during swear word processing in young adolescents with internet gaming disorder. Translational Psychiatry, 5, e624. doi: 10.1038/tp.2015.106.CrossRefGoogle ScholarPubMed
Cimino, S., & Cerniglia, L. (2018). A longitudinal study for the empirical validation of an etiopathogenetic model of internet addiction in adolescence based on early emotion regulation. Biomed Research International, 2018, 18. doi: 10.1155/2018/4038541.Google ScholarPubMed
Deshpande, G., & Hu, X. (2012). Investigating effective brain connectivity from fMRI data: Past findings and current issues with reference to Granger causality analysis. Brain connectivity, 2(5), 235245. doi: 10.1089/brain.2012.0091CrossRefGoogle ScholarPubMed
Di Blasi, M., Giardina, A., Giordano, C., Lo Coco, G., Tosto, C., Billieux, J., & Schimmenti, A. (2019). Problematic video game use as an emotional coping strategy: Evidence from a sample of MMORPG gamers. Journal of Behavioral Addictions, 8(1), 2534. doi: 10.1556/2006.8.2019.02CrossRefGoogle Scholar
Dong, G. H., Li, H., Wang, Y. F., & Potenza, M. N. (2018). Individual differences in self-reported reward-approach tendencies relate to resting-state and reward-task-based fMRI measures. International Journal of Psychophysiology, 128, 3139. doi: 10.1016/j.ijpsycho.2018.03.014CrossRefGoogle ScholarPubMed
Dong, G., Liu, X., Zheng, H., Du, X., & Potenza, M. N. (2019a). Brain response features during forced break could predict subsequent recovery in internet gaming disorder: A longitudinal study. Journal of Psychiatric Research, 113, 1726. doi: 10.1016/j.jpsychires.2019.03.003CrossRefGoogle ScholarPubMed
Dong, G., Shen, Y., Huang, J., & Du, X. (2013). Impaired error-monitoring function in people with internet addiction disorder: An event-related fMRI study. European Addiction Research, 19(5), 269275. doi: 10.1159/000346783CrossRefGoogle ScholarPubMed
Dong, G., Wang, M., Liu, X., Liang, Q., Du, X., & Potenza, M. N. (2019b). Cue-elicited craving-related lentiform activation during gaming deprivation is associated with the emergence of Internet gaming disorder. Addiction biology, 25, 19. doi: 10.1111/adb.12713.Google ScholarPubMed
Dong, G.-H., Wang, M., Wang, Z., Zheng, H., Du, X., & Potenza, M. N. (2020a). Addiction severity modulates the precuneus involvement in internet gaming disorder: Functionality, morphology and effective connectivity. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 98, 109829109829. doi: 10.1016/j.pnpbp.2019.109829CrossRefGoogle ScholarPubMed
Dong, G.-H., Wang, M., Zheng, H., Wang, Z., Du, X., & Potenza, M. N. (2020b). Disrupted prefrontal regulation of striatum-related craving in internet gaming disorder revealed by dynamic causal modeling: Results from a cue-reactivity task. Psychological medicine, 50, 113. doi: 10.1017/s003329172000032x.Google Scholar
Duezel, S., Drewelies, J., Gerstorf, D., Demuth, I., Steinhagen-Thiessen, E., Lindenberger, U., & Kuehn, S. (2019). Structural brain correlates of loneliness among older adults. Scientific Reports, 9, 111. doi: 10.1038/s41598-019-49888-2.Google Scholar
Ehlers, D. K., Daugherty, A. M., Burzynska, A. Z., Fanning, J., Awick, E. A., Chaddock-Heyman, L., … McAuley, E. (2017). Regional brain volumes moderate, but do not mediate, the effects of group-based exercise training on reductions in loneliness in older adults. Frontiers in Aging Neuroscience, 9, 110. doi: 10.3389/fnagi.2017.00110.CrossRefGoogle Scholar
Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 13251335. doi: 10.1016/j.neuroimage.2004.12.034CrossRefGoogle ScholarPubMed
Esber, G. R., Roesch, M. R., Bali, S., Trageser, J., Bissonette, G. B., Puche, A. C., … Schoenbaum, G. (2012). Attention-related Pearce-Kaye-Hall signals in basolateral amygdala require the midbrain dopaminergic system. Biological Psychiatry, 72(12), 10121019. doi: 10.1016/j.biopsych.2012.05.023CrossRefGoogle ScholarPubMed
Estevez, A., Jauregui, P., Sanchez-Marcos, I., Lopez-Gonzalez, H., & Griffiths, M. D. (2017). Attachment and emotion regulation in substance addictions and behavioral addictions. Journal of Behavioral Addictions, 6(4), 534544. doi: 10.1556/2006.6.2017.086CrossRefGoogle ScholarPubMed
Feng, C., Wang, L., Li, T., & Xu, P. (2019). Connectome-based individualized prediction of loneliness. Social Cognitive and Affective Neuroscience, 14(4), 353365. doi: 10.1093/scan/nsz020CrossRefGoogle ScholarPubMed
Fonzo, G. A., Simmons, A. N., Thorp, S. R., Norman, S. B., Paulus, M. P., & Stein, M. B. (2010). Exaggerated and disconnected insular-amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biological Psychiatry, 68(5), 433441. doi: 10.1016/j.biopsych.2010.04.028CrossRefGoogle ScholarPubMed
Friston, K. J., Moran, R., & Seth, A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Current Opinion in Neurobiology, 23(2), 172178. doi: 10.1016/j.conb.2012.11.010CrossRefGoogle ScholarPubMed
Gabard-Durnam, L. J., O'Muircheartaigh, J., Dirks, H., Dean, D. C., Tottenham, N., & Deoni, S. (2018). Human amygdala functional network development: A cross-sectional study from 3 months to 5 years of age. Developmental Cognitive Neuroscience, 34, 6374. doi: 10.1016/j.dcn.2018.06.004CrossRefGoogle ScholarPubMed
Gentile, D. (2009). Pathological video-game use among youth ages 8 to 18: A national study. Psychological Science, 20(5), 594602. doi: 10.1111/j.1467-9280.2009.02340.xCrossRefGoogle ScholarPubMed
Ghashghaei, H., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905923. doi: 10.1016/j.neuroimage.2006.09.046CrossRefGoogle ScholarPubMed
Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12(11), 652669. doi: 10.1038/nrn3119CrossRefGoogle ScholarPubMed
Gu, H., Salmeron, B. J., Ross, T. J., Geng, X. J., Zhan, W., Stein, E. A., & Yang, Y. H. (2010). Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. NeuroImage, 53(2), 593601. doi: 10.1016/j.neuroimage.2010.06.066CrossRefGoogle ScholarPubMed
Hampton, W. H., Unger, A., Von Der Heide, R. J., & Olson, I. R. (2016). Neural connections foster social connections: A diffusion-weighted imaging study of social networks. Social Cognitive and Affective Neuroscience, 11(5), 721727. doi: 10.1093/scan/nsv153CrossRefGoogle ScholarPubMed
Hayes, A. F. (2012). PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling: University of Kansas, KS.Google Scholar
Hofmann, D., & Straube, T. (2019). Resting-state fMRI effective connectivity between the bed nucleus of the stria terminalis and amygdala nuclei. Human Brain Mapping, 40(9), 27232735. doi: 10.1002/hbm.24555CrossRefGoogle ScholarPubMed
Hu, S., Ide, J. S., Chao, H. H., Zhornitsky, S., Fischer, K. A., Wang, W., … Li, C.-S. R. (2018). Resting state functional connectivity of the amygdala and problem drinking in non-dependent alcohol drinkers. Drug and Alcohol Dependence, 185, 173180. doi: 10.1016/j.drugalcdep.2017.11.026CrossRefGoogle ScholarPubMed
Hueluer, G., Drewelies, J., Eibich, P., Duezel, S., Demuth, I., Ghisletta, P., … Gerstorf, D. (2016). Cohort differences in psychosocial function over 20 years: Current older adults feel less lonely and less dependent on external circumstances. Gerontology, 62(3), 354361. doi: 10.1159/000438991CrossRefGoogle Scholar
Kardefelt-Winther, D. (2014). A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Computers in Human Behavior, 31, 351354. doi: 10.1016/j.chb.2013.10.059CrossRefGoogle Scholar
Kerestes, R., Chase, H. W., Phillips, M. L., Ladouceur, C. D., & Eickhoff, S. B. (2017). Multimodal evaluation of the amygdala's functional connectivity. NeuroImage, 148, 219229. doi: 10.1016/j.neuroimage.2016.12.023CrossRefGoogle ScholarPubMed
King, D. L., Delfabbro, P. H., Zwaans, T., & Kaptsis, D. (2013). Clinical features and axis I comorbidity of Australian adolescent pathological Internet and video game users. Australian and New Zealand Journal of Psychiatry, 47(11), 10581067. doi: 10.1177/0004867413491159CrossRefGoogle ScholarPubMed
Ko, C.-H., Hsieh, T.-J., Wang, P.-W., Lin, W.-C., Yen, C.-F., Chen, C.-S., & Yen, J.-Y. (2015). Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 57, 185192. doi: 10.1016/j.pnpbp.2014.11.003CrossRefGoogle ScholarPubMed
Krossbakken, E., Pallesen, S., Mentzoni, R. A., King, D. L., Molde, H., Finseras, T. R., & Torsheim, T. (2018). A cross-lagged study of developmental trajectories of video game engagement, addiction, and mental health. Frontiers in Psychology, 9, 2239. doi: 10.3389/fpsyg.2018.02239.CrossRefGoogle ScholarPubMed
Kuss, D. J., & Griffiths, M. D. (2012). Internet and gaming addiction: A systematic literature review of neuroimaging studies. Brain Sciences, 2(3), 347374. doi: 10.3390/brainsci2030347CrossRefGoogle ScholarPubMed
Laconi, S., Rodgers, R. F., & Chabrol, H. (2014). The measurement of Internet addiction: A critical review of existing scales and their psychometric properties. Computers in Human Behavior, 41, 190202. doi: 10.1016/j.chb.2014.09.026CrossRefGoogle Scholar
LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4–5), 727738. doi: 10.1023/a:1025048802629CrossRefGoogle ScholarPubMed
Liao, W., Wu, G.-R., Xu, Q., Ji, G.-J., Zhang, Z., Zang, Y.-F., & Lu, G. (2014). DynamicBC: A MATLAB toolbox for dynamic brain connectome analysis. Brain Connectivity, 4(10), 780790. doi: 10.1089/brain.2014.0253CrossRefGoogle ScholarPubMed
Lin, X., Dong, G., Wang, Q., & Du, X. (2015). Abnormal gray matter and white matter volume in ‘Internet gaming addicts’. Addictive Behaviors, 40, 137143. doi: 10.1016/j.addbeh.2014.09.010CrossRefGoogle ScholarPubMed
Ma, N., Liu, Y., Li, N., Wang, C.-X., Zhang, H., Jiang, X.-F., … Zhang, D.-R. (2010). Addiction related alteration in resting-state brain connectivity. Neuroimage, 49(1), 738744. doi: 10.1016/j.neuroimage.2009.08.037CrossRefGoogle ScholarPubMed
Maras, P. M., & Petrulis, A. (2008). The posteromedial cortical amygdala regulates copulatory behavior, but not sexual odor preference, in the male syrian hamster (Mesocricetus auratus). Neuroscience, 156(3), 425435. doi: 10.1016/j.neuroscience.2008.08.004CrossRefGoogle Scholar
Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2007). Mapping the functional connectivity of anterior cingulate cortex. NeuroImage, 37(2), 579588. doi: 10.1016/j.neuroimage.2007.05.019CrossRefGoogle ScholarPubMed
Maroney, N., Williams, B. J., Thomas, A., Skues, J., & Moulding, R. (2019). A stress-coping model of problem online video game use. International Journal of Mental Health and Addiction, 17(4), 845858. doi: 10.1007/s11469-018-9887-7CrossRefGoogle Scholar
Martoncik, M., & Loksa, J. (2016). Do world of warcraft (MMORPG) players experience less loneliness and social anxiety in online world (virtual environment) than in real world (offline)? Computers in Human Behavior, 56, 127134. doi: 10.1016/j.chb.2015.11.035CrossRefGoogle Scholar
McGaugh, J. L. (2002). Memory consolidation and the amygdala: A systems perspective. Trends in Neurosciences, 25(9), 456456. doi: 10.1016/s0166-2236(02)02211-7CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 128. doi: 10.1146/annurev.neuro.27.070203.144157CrossRefGoogle ScholarPubMed
Meng, Y., Deng, W., Wang, H., Guo, W., & Li, T. (2015). The prefrontal dysfunction in individuals with internet gaming disorder: A meta-analysis of functional magnetic resonance imaging studies. Addiction Biology, 20(4), 799808. doi: 10.1111/adb.12154CrossRefGoogle ScholarPubMed
Michely, J., Rigoli, F., Rutledge, R. B., Hauser, T. U., & Dolan, R. J. (2019). Distinct processing of aversive experience in amygdala subregions. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 5, 291-300, 5, 291300. doi: 10.1016/j.bpsc.2019.07.008.CrossRefGoogle ScholarPubMed
Petrovich, G. D., & Gallagher, M. (2003). Amygdala subsystems and control of feeding behavior by learned cues. Annals of the New York Academy of Sciences, 985, 251262.CrossRefGoogle ScholarPubMed
Petry, N. M., & O'Brien, C. P. (2013). Internet gaming disorder and the DSM-5. Addiction, 108(7), 11861187. doi: 10.1111/add.12162CrossRefGoogle ScholarPubMed
Petry, N. M., Rehbein, F., Gentile, D. A., Lemmens, J. S., Rumpf, H.-J., Moessle, T., … O'Brien, C. P. (2014). An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction, 109(9), 13991406. doi: 10.1111/add.12457CrossRefGoogle ScholarPubMed
Petry, N. M., Zajac, K., & Ginley, M. K. (2018). Behavioral addictions as mental disorders: To Be or Not To Be?Annual review of clinical psychology, 14, 399423. doi: 10.1146/annurev-clinpsy-032816-045120Google Scholar
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48(2), 175187. doi: 10.1016/j.neuron.2005.09.025CrossRefGoogle ScholarPubMed
Robinson, S. L., Marrero, I. M., Perez-Heydrich, C. A., Sepulveda-Orengo, M. T., Reissner, K. J., & Thiele, T. E. (2019). Medial prefrontal cortex neuropeptide Y modulates binge-like ethanol consumption in C57BL/6J mice. Neuropsychopharmacology, 44(6), 11321140. doi: 10.1038/s41386-018-0310-7CrossRefGoogle ScholarPubMed
Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage, 25(1), 230242. doi: 10.1016/j.neuroimage.2004.11.017CrossRefGoogle ScholarPubMed
Root, C. M., Denny, C. A., Hen, R., & Axel, R. (2014). The participation of cortical amygdala in innate, odour-driven behaviour. Nature, 515(7526), 269U274. doi: 10.1038/nature13897CrossRefGoogle ScholarPubMed
Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Gotimer, K., … Milham, M. P. (2009). Functional connectivity of the human amygdala using resting state fMRI. NeuroImage, 45(2), 614626. doi: 10.1016/j.neuroimage.2008.11.030CrossRefGoogle ScholarPubMed
Russell, D., Cutrona, C. E., Rose, J., & Yurko, K. (1984). Social and emotional loneliness: An examination of Weiss's typology of loneliness. Journal of Personality and Social Psychology, 46(6), 13131321. doi: 10.1037/0022-3514.46.6.1313CrossRefGoogle ScholarPubMed
Schmidt, A., Walter, M., Gerber, H., Seifritz, E., Brenneisen, R., Wiesbeck, G. A., … Borgwardt, S. (2015). Normalizing effect of heroin maintenance treatment on stress-induced brain connectivity. Brain, 138, 217228. doi: 10.1093/brain/awu326CrossRefGoogle ScholarPubMed
Seth, A. K., Chorley, P., & Barnett, L. C. (2013). Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. NeuroImage, 65, 540555. doi: 10.1016/j.neuroimage.2012.09.049CrossRefGoogle Scholar
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of clinical psychiatry, 59(Suppl 20), 2233, quiz 34-57. doi: 10.4088/JCP.09m05305whiGoogle ScholarPubMed
Sundberg, M. (2018). Online gaming, loneliness and friendships among adolescents and adults with ASD. Computers in Human Behavior, 79, 105110. doi: 10.1016/j.chb.2017.10.020CrossRefGoogle Scholar
van Rooij, A. J., Kuss, D. J., Griffiths, M. D., Shorter, G. W., Schoenmakers, T. M., & Van de Mheen, D. (2014). The (co-)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents. Journal of Behavioral Addictions, 3(3), 157165. doi: 10.1556/jba.3.2014.013CrossRefGoogle ScholarPubMed
Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature reviews. Neuroscience, 6(7), 533544. doi: 10.1038/nrn1704CrossRefGoogle ScholarPubMed
Wang, M., Dong, H. H., Zheng, H., Du, X. X., & Dong, G. H. (2020). Inhibitory neuromodulation of the putamen to the prefrontal cortex in Internet gaming disorder: How addiction impairs executive control. Journal of Behavioral Addictions, 9(2), 113. doi: 10.1556/2006.2020.00029.CrossRefGoogle Scholar
Wang, F., Kalmar, J. H., He, Y., Jackowski, M., Chepenik, L. G., Edmiston, E. E., … Blumberg, H. P. (2009). Functional and structural connectivity between the Perigenual anterior cingulate and amygdala in bipolar disorder. Biological Psychiatry, 66(5), 516521. doi: 10.1016/j.biopsych.2009.03.023CrossRefGoogle ScholarPubMed
Wang, L. X., Wu, L. D., Lin, X., Zhang, Y. F., Zhou, H. L., Du, X. X., & Dong, G. H. (2016). Altered brain functional networks in people with internet gaming disorder: Evidence from resting-state fMRI. Psychiatry Research-Neuroimaging, 254, 156163. doi: 10.1016/j.pscychresns.2016.07.001CrossRefGoogle ScholarPubMed
Wichstrom, L., Stenseng, F., Belsky, J., von Soest, T., & Hygen, B. W. (2019). Symptoms of internet gaming disorder in youth: Predictors and comorbidity. Journal of Abnormal Child Psychology, 47(1), 7183. doi: 10.1007/s10802-018-0422-xCrossRefGoogle ScholarPubMed
Wu, L. L., Potenza, M. N., Zhou, N., Kober, H., Shi, X. H., Yip, S. W., … Zhang, J. T. (2020). A role for right dorsolateral prefrontal cortex in enhancing regulation of craving and negative emotions in internet gaming disorder: A randomized, sham-controlled and double-blind trial. Eur Neuropsychopharm. doi: 10.1016/j.euroneuro.2020.04.003.CrossRefGoogle Scholar
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (Resting-State) brain imaging. Neuroinformatics, 14(3), 339351. doi: 10.1007/s12021-016-9299-4CrossRefGoogle ScholarPubMed
Yao, Y. W., Liu, L., Ma, S. S., Shi, X. H., Zhou, N., Zhang, J. T., & Potenza, M. N. (2017). Functional and structural neural alterations in Internet gaming disorder: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 83, 313324. doi: 10.1016/j.neubiorev.2017.10.029CrossRefGoogle ScholarPubMed
Yip, S. W., Gross, J. J., Chawla, M., Ma, S.-S., Shi, X.-H., Liu, L., … Zhang, J. (2018). Is neural processing of negative stimuli altered in addiction independent of drug effects? Findings from drug-naive youth with internet gaming disorder. Neuropsychopharmacology, 43(6), 13641372. doi: 10.1038/npp.2017.283CrossRefGoogle ScholarPubMed
Yoon, E. J., Choi, J.-S., Kim, H., Sohn, B. K., Jung, H. Y., Lee, J.-Y., … Kim, Y. K. (2017). Altered hippocampal volume and functional connectivity in males with internet gaming disorder comparing to those with alcohol use disorder. Scientific Reports, 7, 112. doi: 10.1038/s41598-017-06057-7.CrossRefGoogle ScholarPubMed
Yuan, M., Pantazatos, S. P., Zhu, H., Li, Y., Miller, J. M., Rubin-Falcone, H., … Mann, J. J. (2019). Altered amygdala subregion-related circuits in treatment-naive post-traumatic stress disorder comorbid with major depressive disorder. European Neuropsychopharmacology, 29(10), 10921101. doi: 10.1016/j.euroneuro.2019.07.238CrossRefGoogle ScholarPubMed
Zheng, H., Hu, Y. B., Wang, Z. L., Wang, M., Du, X. X., & Dong, G. H. (2019). Meta-analyses of the functional neural alterations in subjects with internet gaming disorder: Similarities and differences across different paradigms. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 94, 109656. doi: 10.1016/j.pnpbp.2019.109656.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Wang et al. supplementary material

Wang et al. supplementary material 1

Download Wang et al. supplementary material(Image)
Image 11.9 MB
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material 2

Download Wang et al. supplementary material(File)
File 19.2 KB