Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T00:08:14.081Z Has data issue: false hasContentIssue false

The acute and chronic effects of (+) and (−) oxaprotiline upon melatonin secretion in normal subjects

Published online by Cambridge University Press:  09 July 2009

E. Palazidou*
Affiliation:
Institute of Psychiatry, London; Department of Biochemistry, University of Surrey, Guildford
D. Skene
Affiliation:
Institute of Psychiatry, London; Department of Biochemistry, University of Surrey, Guildford
J. Arendt
Affiliation:
Institute of Psychiatry, London; Department of Biochemistry, University of Surrey, Guildford
B. Everitt
Affiliation:
Institute of Psychiatry, London; Department of Biochemistry, University of Surrey, Guildford
S. A. Checkley
Affiliation:
Institute of Psychiatry, London; Department of Biochemistry, University of Surrey, Guildford
*
1 Address for correspondence: Dr E. Palazidou, Institute of Psychiatry, De Crespigny Park, London SE5 8AF.

Synopsis

Ten healthy male subjects were treated for three weeks with (+)oxaprotiline, a selective inhibitor of noradrenaline (NA) uptake and with (−)oxaprotiline which does not inhibit NA uptake. Plasma melatonin concentrations were measured throughout the night at 0, 1, 7 and 21 days and were higher during treatment with (+)oxaprotiline than with (−)oxaprotiline for the entire three weeks of treatment. Since NA stimulates the production and secretion of melatonin, these results are consistent with a sustained increase in noradrenergic activity within the pineal, during 21 days of treatment with an effective NA uptake inhibitor.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referemces

Arendt, J., Bojkowski, C., Franey, C., Wright, J. & Marks, V. (1985). Immunoassay of 6-hydroxymelatonin sulphate in human plasma and urine: abolition of the urinary 24 hour rhythm with atenolol. Journal of Clinical Endocrinology and Metabolism 60, 11661173.Google Scholar
Backstrom, M. (1977). Selective beta adrenoceptor antagonism of induced formation of 14C-N-acetylserotonin in rat pineal glands in organ culture. Life Sciences 20, 17631770.Google Scholar
Bannerjee, S. P., Sharma, V. K. & Khanna, J. M. (1978). Alterations in beta-adrenergic receptor binding during ethanol withdrawal. Nature 276, 407408.Google Scholar
Baumann, P. A. & Maitre, L. (1977). Blockade of presynaptic alpha adrenoceptors and of ovine uptake in the rat brain by the antidepressant mianserin. Naunyn Schmiedeberg's Archives of Pharmacology 30, 3137.CrossRefGoogle Scholar
Beam, J., Franey, C., Arendt, J. & Checkley, S. A. (1989). A study of the effects of desipramine treatment alone and in combination with l-triiodothyronine on 6-sulphatoxymelatonin excretion in depressed patients. British Journal of Psychiatry 155, 341347.Google Scholar
Checkley, S. A., Thompson, C., Burton, S., Franey, C. & Arendt, J. (1985). Clinical studies of the effect of (+)- and (−)-oxaprotiline upon noradrenaline uptake. Psychopharmacology 87, 116118.Google Scholar
Corn, T. H., Thompson, C. & Checkley, S. A. (1984). Effects of desipramine treatment upon central adrenoceptor function in normal subjects. British Journal of Psychiatry 145, 139145.Google Scholar
Cowen, P. J., Fraser, S., Sammons, R. & Green, A. R. (1983). Atenolol reduces plasma melatonin concentration in man. British Journal of Clinical Pharmacology 15, 579581.Google Scholar
Cowen, P. J., Green, A. R., Grahame-Smith, D. C. & Braddock, L. E. (1985). Plasma melatonin during desmethylimipramine treatment: evidence for changes in noradrenergic neurotransmission. British Journal Pharmacology 19, 799805.Google Scholar
Delini-Stula, A., Hauser, K., Baumann, P., Olpe, H.-R., Waldmeier, P. & Storni, A. (1982). Stereospecificity of behavioural and biochemical responses to oxaprotiline a new antidepressant. Advances in Biochemistry and Pharmacology 31, 275276.Google Scholar
Delini-Stula, A., Bischoff, S. & Mogilnicka, E. (1991). Rapid changes in functional responsiveness of the 5-HT system after a single dose treatment with antidepressants: effects of maprotiline, oxaprotiline and its enantiomers. Journal of Neural Transmission (in the press).Google Scholar
Demisch, K., Demisch, L., Bochnik, H. J., Nickelsen, T., Althoff, P. H., Schoffling, K. & Rieth, R. (1986). Melatonin and cortisol increase after fluvoxamine. British Journal of Clinical Pharmacology 22, 620622.Google Scholar
Dieterle, W., Faigle, J. W., Kung, W. & Theobald, W. (1984). The metabolic fate of 14C-oxaprotiline. HCL in man. II. Stereospecific disposition. Biopharmaceutics and Drug Disposition 5, 377386.CrossRefGoogle Scholar
Franey, C. (1988). Clinical and methodological aspects of melatonin production in affective disorder. Ph.D. thesis. University of Surrey.Google Scholar
Franey, C., Aldhous, M., Burton, S., Checkley, S. A. & Arendt, J. (1986). Acute treatment with desipramine stimulates melatonin and 6-sulphatoxymelatonin production in man. British Journal of Clinical Pharmacology 22, 7379.Google Scholar
Fraser, S., Cowen, P. J., Franklin, M., Franey, C. & Arendt, J. (1983). Direct immunoassay for melatonin in plasma. Clinical Chemistry 29, 396397.CrossRefGoogle ScholarPubMed
Fraser, S., Brown, R., Koscis, J., Caroff, S., Amsterdam, J., Winokur, A., Sweeney, J. & Stokes, P. (1986). Patterns of melatonin rhythms in depression. Journal of Neural Transmission 21, 269290.Google Scholar
Friedman, E., Yocca, F. D. & Cooper, T. B. (1984). Antidepressant drugs with varying pharmacological profiles alter pineal beta adrenergic mediated function. Journal of Pharmacology and Experimental Therapy 228, 545549.Google Scholar
Golden, R. N., Markey, S. P., Risby, E. D., Rudorfer, M. V., Cowdry, R. W. & Potter, W. Z. (1988). Antidepressants reduce whole-body norepinephrine turnover while enhancing 6- hydroxymelatonin output. Archives of General Psychiatry 45, 150154.Google Scholar
Govitrapong, P., Murrin, L. C. & Ebadi, M. (1984). Characterization of dopaminergic receptor sites in bovine pineal gland. Journal of Pineal Research 1, 215226.CrossRefGoogle ScholarPubMed
Grasby, P. M., Begg, E. J., Gartside, S. E. & Cowen, P. J. (1989). Effect of idazoxan on evening melatonin concentrations in healthy volunteers. Biological Psychiatry 26, 412416.CrossRefGoogle ScholarPubMed
Iversen, L. L. (1965). The Uptake and Storage of Noradrenaline in Sympathetic Nerves. Cambridge University Press: Cambridge.Google Scholar
Klein, D. C. (1985). Photoneural regulation of the mammalian pineal gland. In Photoperiodism, Melatonin and the Pineal (Ciba Foundation Symposium 117), pp. 3856. Pitman: London.Google Scholar
Klein, D. C. & Weller, J. L. (1970). Indole metabolism in the pineal gland: circadian rhythm in N-acetyltransferase. Science 169, 10931095.Google Scholar
Klein, D. C. & Weller, J. (1973). Adrenergic adenosine 3′5′- monophosphate regulation of serotonin N-acetyltransferase activity and the temporal relationship of serotonin N-acetyltransferase activity to synthesis of 3H-N-acetylserotonin and 3H-melatonin in the cultured rat pineal gland. Pharmacology and Ewxperimental Therapy 186, 516527.Google Scholar
Maj, J. & Wedzony, K. (1988). The influence of oxaprotiline enantiomers given repeatedly on the behavioural effects of D-amphetamine and dopamine injected into the nucleus accumbens. European Journal of Pharmacology 145. 97103.Google Scholar
Maj, J., Papp, M., Skuza, G., Bigaiska, K. & Zazula, M. (1989). The influence of repeated treatment with imipramine, (+)- and (−)-oxaprotiline on behavioural effects of dopamine D-l and D-2 agonists. Journal of Neural Transmission 76, 2938.Google Scholar
Menkes, D. B., Aghajanian, G. K. & Gallagher, D. W. (1983). Chronic antidepressant treatment enhances agonist affinity of rat brain alpha-1 adrenoceptors. European Journal of Pharmacology 87, 3541.Google Scholar
Mishra, R., Gillespie, D. D., Lovell, R. A., Robson, R. D. & Sulser, F. (1982). Oxaprotiline: induction of central noradrenergic subsensitivity by its (+)-enantiomer. Life Sciences 30, 17471755.Google Scholar
Mogilnicka, F., Zazula, M. & Wedzony, K. (1987). Functional supersensitivity to the alpha-1-adrenoceptor agonist after repeated treatment with antidepressant drugs is not conditioned by beta-down-regulation. Neuropharmacology 26, 14571461.CrossRefGoogle Scholar
Murphy, D. L., Charanjit, S., Garrick, A. & Garrick, N. A. (1986). How antidepressants work: cautionary conclusions based on clinical and laboratory studies of the longer-term consequences of antidepressant drug treatment. In Antidepressants and Receptor Function (Ciba Foundation Symposium 123), pp. 106125. Wiley: Chichester.Google Scholar
Palazidou, E., Franey, C., Arendt, J., Stahl, S. & Checkley, S. A. (1989 a). Evidence for a functional role of alpha-1 adrenoceptors in the regulation of melatonin secretion in man. Psychoneuroendocrinology 14, 131135.Google Scholar
Palazidou, E., Papadopoulos, A., Sitsen, A., Stahl, S. & Checkley, S. A. (1989 b). An alpha-2 adrenoceptor antagonist, Org 3770, enhances nocturnal melatonin secretion in man. Psychopharmacology 97, 115117.CrossRefGoogle ScholarPubMed
Parfitt, A., Weller, J. L. & Klein, D. C. (1976). Beta adrenergic blockers decrease adrenergically stimulated N-acetyltransferase Activity in pineal glands in organ culture. Neuropharmacology 15, 355358.Google Scholar
Pelayo, F., Dubocovich, M. L. & Langer, S. Z. (1979). Regulation of noradrenaline release in the rat pineal through a negative feedback mechanism mediated by presynaptic alpha-2 adrenoceptors. European Journal of Pharmacology 45, 317318.CrossRefGoogle Scholar
Richelson, E. (1984). The newer antidepressants: structures, pharmacokinetics, pharmacodynamics and proposed mechanisms of action. Psychopharmacology Bulletin 20, 213223.Google Scholar
Sack, R. L. & Lewy, A. J. (1985). Desmethylimipramine treatment increases melatonin production in humans. Biological Psychiatry 21, 406409.CrossRefGoogle Scholar
Smith, J. A., Barnes, J. L. & Mee, T. J. (1979). The effect of neuroleptic drugs on serum and cerebrospinal fluid melatonin concentrations in psychiatric subjects. Journal of Pharmacy and Pharmacology 31, 246248.Google Scholar
Sugden, D., Namboodiri, M. A., Klein, D. C., Grady, R. Jr. & Mefford, I. N. (1985). Ovine pineal alpha-1 adrenoceptors: characterization and evidence for a functional role in the regulation of serum melatonin. Endocrinology 116, 19601967.Google Scholar
Sugrue, M. F. (1982). A study of the sensitivity of rat brain alpha-2 adrenoceptors during chronic antidepressant treatment. Naunyn Schmiedeherg's Archives of Pharmacology 320, 9096.Google Scholar
Sulser, F. (1984). Regulations and functions of noradrenaline receptor systems in brain. Psychopharmacological aspects. Neuropharmacology 23, 255261.Google Scholar
Thompson, C., Mezey, G., Corn, T. H., Franey, C., Arendt, J. & Checkley, S. A. (1985). The effect of desipramine upon melatonin and cortisol secretion in depressed patients and normal subjects. British Journal of Psychiatry 147, 389393.Google Scholar
U'Prichard, D. C., Greenberg, D. A., Sheehan, P. P. & Snyder, S. H. (1978). Tricyclic antidepressants: therapeutic properties and affinity for alpha noradrenergic binding sites in the brain. Science 199, 197198.Google Scholar
Vanecek, J., Sugden, D., Weller, J. & Klein, D. C. (1985). Atypical synergistic alpha-1- and beta-adrenergic regulation of adenosine 3′5′-monophosphate and guanosine 3′5′-monophosphate in rat pinealocytes. Endocrinology 116, 21672173.Google Scholar
Vaughan, G. M., Pelham, R. W., Pang, S. F., Loughlin, L. L., Wilson, K. M., Sandock, K. L., Vaughan, M. K., Koslow, S. H. & Reiter, R. J. (1976). Nocturnal elevation of plasma melatonin and urinary 5-hydroxyindoleacetic acid in young men: attempts at modification by brief changes in environmental lighting and sleep and by autonomic drugs. Journal of Clinical Endocrinology and Metabolism 42, 752764.Google Scholar
Waldmeier, P. C., Baumann, P. A., Wilhelm, M., Bernasconi, R. & Maitre, L. (1977). Selective inhibition of noradrenaline and serotonin uptake by C49802B and CGP6085A. European Journal of Pharmacology 46, 387391.Google Scholar
Waldmeier, P. C., Baumann, P. A., Hauser, K., Maitre, L. & Storni, A. (1982). Oxaprotiline, a noradrenaline uptake inhibitor with an active and inactive enantiomer. Biochemistry and Pharmacology 31, 21692176.Google Scholar
Zatz, M., Kebabian, J., Romero, J. A., Lefkowitz, R. J. & Axelrod, J. (1976). Pineal beta adrenergic receptor: correlation of binding of l-alprenolol with stimulation of adenylate cyclase. Journal of Pharmacology and Experimental and Therapy 199, 714722.Google Scholar