Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T08:23:29.193Z Has data issue: false hasContentIssue false

Weight gain as a risk factor for progressive neurochemical abnormalities in first episode mania patients: a longitudinal magnetic resonance spectroscopy study

Published online by Cambridge University Press:  12 March 2021

David J. Bond
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
Leonardo E. Silveira
Affiliation:
Laboratory of Molecular Psychiatry, Centro de Pesquisas Experimentais, Hospital de Clínicas de Porto Alegre, and INCT for Translational Medicine, Porto Alegre, RS, Brazil
Ivan J. Torres
Affiliation:
Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
Raymond W. Lam
Affiliation:
Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
Lakshmi N. Yatham*
Affiliation:
Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
*
Author for correspondence: Lakshmi N. Yatham, E-mail: [email protected]

Abstract

Background

We previously reported that bipolar disorder (BD) patients with clinically significant weight gain (CSWG; ⩾7% of baseline weight) in the 12 months after their first manic episode experienced greater limbic brain volume loss than patients without CSWG. It is unknown whether CSWG is also a risk factor for progressive neurochemical abnormalities.

Methods

We investigated whether 12-month CSWG predicted greater 12-month decreases in hippocampal N-acetylaspartate (NAA) and greater increases in glutamate + glutamine (Glx) following a first manic episode. In BD patients (n = 58) and healthy comparator subjects (HS; n = 34), we measured baseline and 12-month hippocampal NAA and Glx using bilateral 3-Tesla single-voxel proton magnetic resonance spectroscopy. We used general linear models for repeated measures to investigate whether CSWG predicted neurochemical changes.

Results

Thirty-three percent of patients and 18% of HS experienced CSWG. After correcting for multiple comparisons, CSWG in patients predicted a greater decrease in left hippocampal NAA (effect size = −0.52, p = 0.005). CSWG also predicted a greater decrease in left hippocampal NAA in HS with a similar effect size (−0.53). A model including patients and HS found an effect of CSWG on Δleft NAA (p = 0.007), but no diagnosis effect and no diagnosis × CSWG interaction, confirming that CSWG had similar effects in patients and HS.

Conclusion

CSWG is a risk factor for decreasing hippocampal NAA in BD patients and HS. These results suggest that the well-known finding of reduced NAA in BD may result from higher body mass index in patients rather than BD diagnosis.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baslow, M. H. (2003). N-acetylaspartate in the vertebrate brain: Metabolism and function. Neurochemical Research, 28, 941953.CrossRefGoogle ScholarPubMed
Bond, D. J., da Silveira, L. E., MacMillan, E. L., Torres, I. J., Lang, D. J., Su, W., … Yatham, L. N. (2016). Relationship between body mass index and hippocampal glutamate/glutamine in bipolar disorder. British Journal of Psychiatry, 208, 146152.CrossRefGoogle ScholarPubMed
Bond, D. J., Ha, T. H., Lang, D. J., Su, W., Torres, I. J., Honer, W. G., … Yatham, L. N. (2014). Body mass index-related regional gray and white matter volume reductions in first-episode mania patients. Biological Psychiatry, 76, 138145.CrossRefGoogle ScholarPubMed
Bond, D. J., Kunz, M., Torres, I. J., Lam, R. W., & Yatham, L. N. (2010). The association of weight gain with mood symptoms and functional outcomes following a first manic episode: Prospective 12-month data from the Systematic Treatment Optimization Program for Early Mania (STOP-EM). Bipolar Disorders, 12, 616626.CrossRefGoogle ScholarPubMed
Bond, D. J., Silveira, L. E., MacMillan, E. L., Torres, I. J., Lam, R. W., & Yatham, L. N. (2017). Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder. Translational Psychiatry, 7, e1071. doi:10.1038/tp.2017.42CrossRefGoogle ScholarPubMed
Bond, D. J., Su, W., Honer, W. G., Dhanoa, T., Batres-y-Carr, T., Lee, S. S., … Yatham, L. N. (2019). Weight gain as a predictor of frontal and temporal lobe volume loss in early-stage bipolar disorder: A prospective 12-month MRI study. Bipolar Disorders, 21, 5060.CrossRefGoogle ScholarPubMed
Cherbuin, N., Sargent-Cox, K., Fraser, M., Sachdev, P., & Anstey, K. J. (2015). Being overweight is associated with hippocampal atrophy: The PATH through life study. International Journal of Obesity, 39(10), 15091514.CrossRefGoogle ScholarPubMed
Cole, J. H., Boyle, C. P., Simmons, A., Cohen-Woods, S., Rivera, M., McGuffin, P., … Fu, C. H. (2013). Body mass index, but not FTO genotype or major depressive disorder, influences brain structure. Neuroscience, 252, 109117.CrossRefGoogle ScholarPubMed
Coplan, J. D., Fathy, H. M., Abdallah, C. G., Ragab, S. A., Kral, J. G., Mao, X., … Mathew, S. J. (2014). Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight. NeuroImage Clinical, 4, 326335.CrossRefGoogle ScholarPubMed
Davidson, T. L., Hargrave, S. L., Swithers, S. E., Sample, C. H., Fu, X., Kinzig, K. P., & Zheng, W. (2013). Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience, 253, 110122.CrossRefGoogle ScholarPubMed
Dempster, A. P., Laird, N. H., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B39, 138.Google Scholar
Depp, C. A., Strassnig, M., Mausbach, B. T., Bowie, C. R., Wolyniec, P., Thornquist, M. H., … Harvey, P. D. (2014). Association of obesity and treated hypertension and diabetes with cognitive ability in bipolar disorder and schizophrenia. Bipolar Disorders, 16, 422431.CrossRefGoogle ScholarPubMed
Fagiolini, A., Frank, E., Houck, P. R., Mallinger, A. G., Swartz, H. A., Buysse, D. J., … Kupfer, D. J. (2002). Prevalence of obesity and weight change during treatment in patients with bipolar I disorder. Journal of Clinical Psychiatry, 63, 528–33.CrossRefGoogle ScholarPubMed
Fagiolini, A., Frank, E., Scott, J. A., Turkin, S., & Kupfer, D. J. (2005). Metabolic syndrome in bipolar disorder: Findings from the Bipolar Disorder Center for Pennsylvanians. Bipolar Disorders, 7, 424430.CrossRefGoogle ScholarPubMed
Fagiolini, A., Kupfer, D. J., Houck, P. R., Novick, D. M., & Frank, E. (2003). Obesity as a correlate of outcome in patients with bipolar I disorder. American Journal of Psychiatry, 160, 112–17.CrossRefGoogle ScholarPubMed
Gigante, A. D., Bond, D. J., Lafer, B., Lam, R. W., Young, L. T., & Yatham, L. N. (2012). Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: A meta-analysis. Bipolar Disorders, 14, 478487.CrossRefGoogle ScholarPubMed
Goldstein, B. I., Liu, S. M., Schaffer, A., Sala, R., & Blanco, C. (2013). Obesity and the three-year longitudinal course of bipolar disorder. Bipolar Disorders, 15, 284293.CrossRefGoogle ScholarPubMed
Goldstein, B. I., Liu, S. M., Zivkovic, N., Schaffer, A., Chien, L. C., & Blanco, C. (2011). The burden of obesity among adults with bipolar disorder in the United States. Bipolar Disorders, 13, 387395.CrossRefGoogle ScholarPubMed
Grayson, B. E., Fitzgerald, M. F., Hakala-Finch, A. P., Ferris, V. M., Begg, D. P., Tong, J., … Benoit, S. C. (2014). Improvements in hippocampal-dependent memory and microglial infiltration with calorie restriction and gastric bypass surgery, but not with vertical sleeve gastrectomy. International Journal of Obesity, 38, 349356.CrossRefGoogle Scholar
Gunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F., Spitznagel, M. B., Grieve, S., & Gordon, E. (2008). Relationship between body mass index and brain volume in healthy adults. International Journal of Neuroscience, 118, 15821593.CrossRefGoogle ScholarPubMed
Hallahan, B., Newell, J., Soares, J. C., Brambilla, P., Strakowski, S. M., Fleck, D. E., … McDonald, C. (2011). Structural magnetic resonance imaging in bipolar disorder: An international collaborative mega-analysis of individual adult patient data. Biological Psychiatry, 69, 326335.CrossRefGoogle ScholarPubMed
Hartberg, C. B., Jorgensen, K. N., Haukvik, U. K., Westlye, L. T., Melle, I., Andreassen, O. A., & Agartz, I. (2015). Lithium treatment and hippocampal subfields and amygdala volumes in bipolar disorder. Bipolar Disorders, 17, 496506.CrossRefGoogle ScholarPubMed
Haukvik, U. K., Westlye, L. T., Morch-Johnsen, L., Jorgensen, K. N., Lange, E. H., Dale, A. M., … Agartz, I. (2015). In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 77, 581588.CrossRefGoogle ScholarPubMed
Ho, A. J., Stein, J. L., Hua, X., Lee, S., Hibar, D. P., Leow, A. D., … Thompson, P. M. (2010). A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proceedings of the National Academy of Sciences of the USA, 107, 84048409.CrossRefGoogle ScholarPubMed
Hu, C., Torres, I. J., Qian, H., Wong, H., Halli, P., Dhanoa, T., … Yatham, L. N. (2016). Trajectories of body mass index change in first episode of mania: 3-year data from the Systematic Treatment Optimization Program for Early Mania (STOP-EM). Journal of Affective Disorders, 208, 291297.CrossRefGoogle ScholarPubMed
Islam, A. H., Metcalfe, A. W. S., MacIntosh, B. J., Korczak, D. J., & Goldstein, B. I. (2018). Greater body mass index is associated with reduced frontal cortical volumes among adolescents with bipolar disorder. Journal of Psychiatry & Neuroscience, 43, 120130.CrossRefGoogle ScholarPubMed
Kanoski, S. E., & Davidson, T. L. (2011). Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiology & Behavior, 103, 5968.CrossRefGoogle ScholarPubMed
Kanoski, S. E., Zhang, Y., Zheng, W., & Davidson, T. L. (2010). The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. Journal of Alzheimer's Disease, 21, 207219.CrossRefGoogle ScholarPubMed
Kosior, R. K., Lauzon, M. L., Federico, P., & Frayne, R. (2011). Algebraic T2 estimation improves detection of right temporal lobe epilepsy by MR T2 relaxometry. Neuroimage, 58, 189197.CrossRefGoogle ScholarPubMed
Kreis, R. (2016). The trouble with quality filtering based on relative Cramer-Rao lower bounds. Magnetic Resonance in Medicine, 75, 1518.CrossRefGoogle ScholarPubMed
Kuswanto, C. N., Sum, M. Y., Yang, G. L., Nowinski, W. L., McIntyre, R. S., & Sim, K. (2014). Increased body mass index makes an impact on brain white-matter integrity in adults with remitted first-episode mania. Psychological Medicine, 44, 533541.CrossRefGoogle ScholarPubMed
Li, N., Deng, W., He, Z. L., Li, M. L., Huang, M. M., Li, T., & Deng, H. (2013). Relationship between body mass index and volume ratio of brain gray matter in patients with first-episode schizophrenia. Sichuan Da Xue Xue Bao, 44, 7679.Google ScholarPubMed
Maddock, R. J., & Buonocore, M. H. (2012). MR Spectroscopic studies of the brain in psychiatric disorders. Current Topics in Behavioral Neurosciences, 11, 199251.CrossRefGoogle ScholarPubMed
Martin, A. A., & Davidson, T. L. (2014). Human cognitive function and the obesogenic environment. Physiology & Behavior, 136, 185193.CrossRefGoogle ScholarPubMed
Mathalon, D. H., Sullivan, E. V., Rawles, J. M., & Pfefferbaum, A. (1993). Correction for head size in brain-imaging measurements. Psychiatry Research, 50, 121139.CrossRefGoogle ScholarPubMed
McElroy, S. L., Kemp, D. E., Friedman, E. S., Reilly-Harrington, N. A., Sylvia, L. G., Calabrese, J. R., … Shelton, R. C. (2015). Obesity, but not metabolic syndrome, negatively affects outcome in bipolar disorder. Acta Psychiatrica Scandinavica, 133, 144153.CrossRefGoogle Scholar
McIntyre, R. S., Mandel, F. S., & Pappadopulos, E. (2011). Baseline metabolic status is a moderator of outcome in bipolar disorder patients: Analysis of pooled data from ziprasidone monotherapy clinical trials. Presented at the 164th Annual Meeting of the American Psychiatric Association, Honolulu, HI, May 14–18, 2011.Google Scholar
Melka, M. G., Gillis, J., Bernard, M., Abrahamowicz, M., Chakravarty, M. M., Leonard, G. T., … Pausova, Z. (2013). FTO, obesity and the adolescent brain. Human Molecular Genetics, 22, 10501058.CrossRefGoogle ScholarPubMed
Nordengen, K., Heuser, C., Rinholm, J. E., Matalon, R., & Gundersen, V. (2015). Localisation of N-acetylaspartate in oligodendrocytes/myelin. Brain Structure & Function, 220, 899917.CrossRefGoogle ScholarPubMed
Opel, N., Redlich, R., Grotegerd, D., Dohm, K., Heindel, W., Kugel, H., … Dannlowski, U. (2015). Obesity and major depression: Body-mass index (BMI) is associated with a severe course of disease and specific neurostructural alterations. Psychoneuroendocrinology, 51, 219226.CrossRefGoogle ScholarPubMed
Otten, M., & Meeter, M. (2015). Hippocampal structure and function in individuals with bipolar disorder: A systematic review. Journal of Affective Disorders, 174, 113125.CrossRefGoogle ScholarPubMed
Peters, A. T., Shesler, L. W., Sylvia, L., da Silva Magalhaes, P. V., Miklowitz, D. J., Otto, M. W., … Deckersbach, T. (2015). Medical burden, body mass index and the outcome of psychosocial interventions for bipolar depression. Australian and New Zealand Journal of Psychiatry, 50, 667677.CrossRefGoogle ScholarPubMed
Posse, S., Otazo, R., Caprihan, A., Bustillo, J., Chen, H., Henry, P. G., … Alger, J. R. (2007). Proton echo-planar spectroscopic imaging of J-coupled resonances in human brain at 3 and 4 tesla. Magnetic Resonance in Medicine, 58, 236244.CrossRefGoogle Scholar
Provencher, S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance in Medicine, 30, 672679.CrossRefGoogle ScholarPubMed
Rozin, P., Dow, S., Moscovitch, M., & Rajaram, S. (1998). What causes humans to begin and end a meal? A role for memory for what has been eaten, as evidenced by a study of multiple meal eating in amnesic patients. Psychological Science, 9, 392396.CrossRefGoogle Scholar
Sachs, G. S., & Guille, C. (1999). Weight gain associated with use of psychotropic medications. The Journal of Clinical Psychiatry, 60(Suppl 21), 1619.Google ScholarPubMed
Satzer, D., & Bond, D. J. (2016). Mania secondary to focal brain lesions: Implications for understanding the functional neuroanatomy of bipolar disorder. Bipolar Disorders, 18, 205220.CrossRefGoogle ScholarPubMed
Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P., & Barnes, C. A. (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews Neuroscience, 12, 585601.CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl 1), S208S219.CrossRefGoogle ScholarPubMed
Stangl, D., & Thuret, S. (2009). Impact of diet on adult hippocampal neurogenesis. Genes & Nutrition, 4, 271282.CrossRefGoogle ScholarPubMed
Viana-Sulzbach, M., Pedrini, M., Bücker, J., Brietzke, E., & Gama, C. S. (2016). Hippocampus size does not correlate with body mass index in bipolar disorder. Brazilian Journal of Psychiatry, 38, 8687.CrossRefGoogle Scholar
Whitwell, J. L., Crum, W. R., Watt, H. C., & Fox, N. C. (2001). Normalization of cerebral volumes by use of intracranial volume: Implications for longitudinal quantitative MR imaging. American Journal of Neuroradiology, 22, 14831489.Google ScholarPubMed
Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., … Smith, S. M. (2009). Bayesian Analysis of neuroimaging data in FSL. Neuroimage, 45(1 Suppl), S173S186.CrossRefGoogle ScholarPubMed
Yatham, L. N., Kauer-Sant'anna, M., Bond, D. J., Lam, R. W., & Tam, E. (2009). Course and outcome after the first manic episode in patients with bipolar disorder: Prospective 12-month data from the Systematic Treatment Optimization Program for Early Mania (STOP-EM) project. Canadian Journal of Psychiatry, 54, 105112.CrossRefGoogle Scholar
Yatham, L. N., Kennedy, S. H., O'Donovan, C., Parikh, S. V., MacQueen, G., McIntyre, R. S., … Beaulieu, S. (2006). Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: Update 2007. Bipolar Disorders, 8, 721739.CrossRefGoogle Scholar
Yatham, L. N., Kennedy, S. H., O'Donovan, C., Parikh, S., MacQueen, G., McIntyre, R., … Gorman, C. P. (2005). Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: Consensus and controversies. Bipolar Disorders, 7(Suppl 3), 569.CrossRefGoogle Scholar
Yatham, L. N., Kennedy, S. H., Parikh, S. V., Schaffer, A., Beaulieu, S., Alda, M., … Berk, M. (2013). Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: Update 2013. Bipolar Disorders, 15, 144.CrossRefGoogle Scholar
Yatham, L. N., Kennedy, S. H., Parikh, S. V., Schaffer, A., Bond, D. J., Frey, B. N., … Berk, M. (2018). Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disorders, 20(2), 97170.CrossRefGoogle Scholar
Yatham, L. N., Kennedy, S. H., Schaffer, A., Parikh, S. V., Beaulieu, S., O'Donovan, C., … Kapczinski, F. (2009). Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: Update 2009. Bipolar Disorders, 11, 225255.CrossRefGoogle Scholar
Yildiz-Yesiloglu, A., & Ankerst, D. P. (2006). Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: A systematic review of the in vivo proton magnetic resonance spectroscopy findings. Progress in Neuropsychopharmacology and Biological Psychiatry, 30, 969995.CrossRefGoogle ScholarPubMed