Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T02:41:36.092Z Has data issue: false hasContentIssue false

A systematic review of treatments for alcohol-related cognitive impairment: lessons from the past and gaps for future interventions

Published online by Cambridge University Press:  25 August 2020

Elsa Caballeria*
Affiliation:
Grup Recerca Addiccions Clínic (GRAC-GRE). Department of Psychiatry, Clinical Institute of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic Barcelona, RETICS (Red de Trastornos adictivos), University of Barcelona, Villarroel, 170, 08036Barcelona, Spain
Clara Oliveras
Affiliation:
Grup Recerca Addiccions Clínic (GRAC-GRE). Department of Psychiatry, Clinical Institute of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic Barcelona, RETICS (Red de Trastornos adictivos), University of Barcelona, Villarroel, 170, 08036Barcelona, Spain
Laura Nuño
Affiliation:
Grup Recerca Addiccions Clínic (GRAC-GRE). Department of Psychiatry, Clinical Institute of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic Barcelona, RETICS (Red de Trastornos adictivos), University of Barcelona, Villarroel, 170, 08036Barcelona, Spain
Mercedes Balcells-Oliveró
Affiliation:
Grup Recerca Addiccions Clínic (GRAC-GRE). Department of Psychiatry, Clinical Institute of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic Barcelona, RETICS (Red de Trastornos adictivos), University of Barcelona, Villarroel, 170, 08036Barcelona, Spain
Antoni Gual
Affiliation:
Grup Recerca Addiccions Clínic (GRAC-GRE). Department of Psychiatry, Clinical Institute of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic Barcelona, RETICS (Red de Trastornos adictivos), University of Barcelona, Villarroel, 170, 08036Barcelona, Spain
Hugo López-Pelayo
Affiliation:
Grup Recerca Addiccions Clínic (GRAC-GRE). Department of Psychiatry, Clinical Institute of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic Barcelona, RETICS (Red de Trastornos adictivos), University of Barcelona, Villarroel, 170, 08036Barcelona, Spain
*
Author for correspondence: Elsa Caballeria, E-mail: [email protected]

Abstract

Alcohol-related cognitive impairment (ARCI) is highly prevalent among patients with alcohol dependence. Although it negatively influences treatment outcome, this condition is underdiagnosed and undertreated. The aim of this systematic review is to investigate the existing evidence regarding both cognitive and pharmacological interventions for ARCI. We systematically reviewed PubMed, Scopus and Science direct databases up to May 2019 and followed the PRISMA guidelines. The quality of the studies was assessed using the Jadad Scale. Twenty-six studies were eligible for inclusion (14 referring to neuropsychological interventions and 12 to pharmacological treatments). Among neuropsychological interventions, computerised treatments, errorless learning and component method showed positive effects on working memory, memory measures and general cognitive function. On the other hand, thiamine, memantine and methylphenidate improved working memory, long-term memory and general cognitive function. Nevertheless, these studies have several limitations, such as small sample size, lack of replication of the results or low specificity of the interventions. Therefore, no gold-standard intervention can yet be recommended for clinical practice, and further research based on promising strategies (e.g. digital interventions, thiamine) is required.

Type
Review Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altgassen, M., Ariese, L., Wester, A. J., & Kessels, R. P. C. (2016). Salient cues improve prospective remembering in Korsakoff's syndrome. British Journal of Clinical Psychology, 55(2), 123136. doi:10.1111/bjc.12099.CrossRefGoogle Scholar
Ambrose, M. L., Bowden, S. C., & Whelan, G. (2001). Thiamin treatment and working memory function of alcohol-dependent people: Preliminary findings. Alcoholism: Clinical and Experimental Research, 25(1), 112116. doi:10.1111/j.1530-0277.2001.tb02134.x.CrossRefGoogle Scholar
Barrio, P., Teixidor López, L., Gual, A., Moreno-España, J., Frías-Torres, C., & Ortega, L. (2016). Terapia de rehabilitación cognitiva en pacientes con trastorno por consumo de alcohol y trastorno neurocognitivo. Estudio piloto. Adicciones, 30, 93100. doi:10.20882/adicciones.757.Google Scholar
Bates, M. E., Bowden, S. C., & Barry, D. (2002). Neurocognitive impairment associated with alcohol use disorders: Implications for treatment. Experimental and Clinical Psychopharmacology, 10(3), 193212. doi:10.1037/1064-1297.10.3.193.CrossRefGoogle Scholar
Bates, M. E., Buckman, J. F., & Nguyen, T. T. (2013). A role for cognitive rehabilitation in increasing the effectiveness of treatment for alcohol use disorders. Neuropsychology Review, 23(1), 2747. doi:10.1007/s11065-013-9228-3.CrossRefGoogle Scholar
Bates, M. E., Pawlak, A. P., Tonigan, J. S., & Buckman, J. F. (2006). Cognitive impairment influences drinking outcome by altering therapeutic mechanisms of change. Psychology of Addictive Behaviors: Journal of the Society of Psychologists in Addictive Behaviors, 20(3), 241. doi:10.1037/0893-164X.20.3.241.CrossRefGoogle Scholar
Bell, M. D., Vissicchio, N. A., & Weinstein, A. J. (2016). Cognitive training and work therapy for the treatment of verbal learning and memory deficits in veterans with alcohol use disorders. Journal of Dual Diagnosis, 12(1), 8389. doi:10.1080/15504263.2016.1145779.CrossRefGoogle Scholar
Bernardin, F., Maheut-Bosser, A., & Paille, F. (2014). Cognitive impairments in alcohol-dependent subjects. Frontiers in Psychiatry, 5(JUL), 16. doi:10.3389/fpsyt.2014.00078.CrossRefGoogle Scholar
Blume, A. W., & Alan Marlatt, G. (2009). The role of executive cognitive functions in changing substance use: What we know and what we need to know. Annals of Behavioral Medicine, 37(2), 117125. doi:10.1007/s12160-009-9093-8.CrossRefGoogle Scholar
Blume, A. W., Schmaling, K. B., & Marlatt, G. A. (2005). Memory, executive cognitive function, and readiness to change drinking behavior. Addictive Behaviors, 30(2), 301314. doi:10.1016/J.ADDBEH.2004.05.019.CrossRefGoogle Scholar
Brion, M., D'Hondt, F., Pitel, A.-L., Lecomte, B., Ferauge, M., de Timary, P., … Lecomte, B. (2017). Executive functions in alcohol-dependence: A theoretically grounded and integrative exploration. Drug and Alcohol Dependence, 177(February), 3947. doi:10.1016/j.drugalcdep.2017.03.018.CrossRefGoogle Scholar
Cameirao, M. S., Bermudez i Badia, S., Duarte Oller, E., & Verschure, P. F. (2010). Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: Methodology, design, psychometrics, usability and validation. Journal of NeuroEngineering and Rehabilitation, 7(1), 48. doi:10.1186/1743-0003-7-48.CrossRefGoogle Scholar
Chou, W.P., Chang, Y.H., Lin, H.C., Chang, Y.H., Chen, Y.Y., & Ko, C.H. (2018). Thiamine for preventing dementia development among patients with alcohol use disorder: A nationwide population-based cohort study. Clinical Nutrition (Edinburgh, Scotland), 38(3), 12691273. doi:10.1016/j.clnu.2018.05.009.CrossRefGoogle Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillside, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Czapla, M., Simon, J. J., Richter, B., Kluge, M., Friederich, H.-C., Herpertz, S., … Loeber, S. (2016). The impact of cognitive impairment and impulsivity on relapse of alcohol-dependent patients: Implications for psychotherapeutic treatment. Addiction Biology, 21(4), 873884. doi:10.1111/adb.12229.CrossRefGoogle Scholar
Day, E., Bentham, P. W., Callaghan, R., Kuruvilla, T., & George, S. (2013). Thiamine for prevention and treatment of Wernicke-Korsakoff Syndrome in people who abuse alcohol. The Cochrane Database of Systematic Reviews, 2013(7), CD004033. doi:10.1002/14651858.CD004033.pub3.Google Scholar
Djokic, G., & Zivkovic, N. (2009). P01-28 Rivastigmine in treatment of alcohol-induced persisting dementia. European Psychiatry, 24, S416. doi:10.1016/S0924-9338(09)70649-2.CrossRefGoogle Scholar
Domínguez-Salas, S., Díaz-Batanero, C., Lozano-Rojas, O. M., & Verdejo-García, A. (2016). Impact of general cognition and executive function deficits on addiction treatment outcomes: Systematic review and discussion of neurocognitive pathways. Neuroscience & Biobehavioral Reviews, 71, 772801. doi:10.1016/J.NEUBIOREV.2016.09.030.CrossRefGoogle Scholar
Florez, G., Espandian, A., Villa, R., & Saiz, P. A. (2019). Clinical implications of cognitive impairment and alcohol dependence Deterioro cognitivo y dependencia alcohólica, implicaciones clínicas. Adicciones, 31(1), 37.CrossRefGoogle Scholar
Gamito, P., Oliveira, J., Lopes, P., Brito, R., Morais, D., Caçoete, C., … Oliveira, H. (2017). Cognitive training through mHealth for individuals with substance use disorder. Methods of Information in Medicine, 56(2), 156161. doi:10.3414/me16-02-0012.Google Scholar
Gamito, P., Oliveira, J., Lopes, P., Brito, R., Morais, D., Silva, D., … Deus, A. (2014). Executive functioning in alcoholics following an mHealth cognitive stimulation program: Randomized controlled trial. Journal of Medical Internet Research, 16(4), e102. doi:10.2196/jmir.2923.CrossRefGoogle Scholar
Godfrey, H. P. D., & Knight, R. G. (1985). Cognitive rehabilitation of memory functioning in amnesiac alcoholics. Journal of Consulting and Clinical Psychology, 53(4), 555557. doi:10.1037/0022-006X.53.4.555.CrossRefGoogle Scholar
Goldman, R. S., & Goldman, M. S. (1988). Experience-dependent cognitive recovery in alcoholics: A task component strategy. Journal of Studies on Alcohol, 49(2), 142148. doi:10.15288/jsa.1988.49.142.CrossRefGoogle Scholar
Gunn, R. L., Gerst, K. R., Wiemers, E. A., Redick, T. S., & Finn, P. R. (2018). Predictors of effective working memory training in individuals with alcohol use disorders. Alcoholism: Clinical and Experimental Research, 42(12), 24322441. doi:10.1111/acer.13892.CrossRefGoogle Scholar
Haj, E. M., Kessels, R., Urso, L., & Nandrino, J. L. (2018). Chunking to improve verbal forward spans in Korsakoff's syndrome. Applied Neuropsychology: Adult, 0(0), 18. doi:10.1080/23279095.2018.1499023.Google Scholar
Harper, C. (2009). The neuropathology of alcohol-related brain damage. Alcohol and Alcoholism, 44(2), 136140. doi:10.1093/alcalc/agn102.CrossRefGoogle Scholar
Hayes, V., Demirkol, A., Ridley, N., Withall, A., & Draper, B. (2016). Alcohol-related cognitive impairment: Current trends and future perspectives. Neurodegenerative Disease Management, 6(6), 509523. doi:10.2217/nmt-2016-0030.CrossRefGoogle Scholar
Horton, L., Duffy, T., & Martin, C. (2015). Neurocognitive, psychosocial and functional status of individuals with alcohol-related brain damage (ARBD) on admission to specialist residential care. Drugs: Education, Prevention and Policy, 22(5), 416427. doi:10.3109/09687637.2015.1050997.Google Scholar
Horton, L., Duffy, T., & Martin, C. R. (2014). Interventions for alcohol-related brain damage (ARBD): Do specific approaches restrict the evolution of comprehensive patient care? Drugs: Education, Prevention and Policy, 21(5), 408419. doi:10.3109/09687637.2014.924481.Google Scholar
Houben, K., Wiers, R. W., & Jansen, A. (2011). Getting a grip on drinking behavior. Psychological Science, 22(7), 968975. doi:10.1177/0956797611412392.CrossRefGoogle Scholar
Ioime, L., Guglielmo, R., Affini, G. F., Quatrale, M., Martinotti, G., Callea, A., … Janiri, L. (2018). Neuropsychological performance in alcohol dependent patients: A one-year longitudinal study. Psychiatry Investigation, 15(5), 505513. doi:10.30773/pi.2017.09.27.1.CrossRefGoogle Scholar
Jadad, A. R., Moore, R. A., Carroll, D., Jenkinson, C., Reynolds, D. J., Gavaghan, D. J., & McQuay, H. J. (1996). Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Controlled Clinical Trials, 17(1), 112. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8721797.CrossRefGoogle Scholar
Kessels, R., Van Loon, E., & Wester, A. (2007). Route learning in amnesia: A comparison of trial-and-error and errorless learning in patients with the Korsakoff syndrome. Clinical Rehabilitation, 21(10), 905. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=amed&AN=0104361&site=ehost-live.CrossRefGoogle Scholar
Khemiri, L., Brynte, C., Stunkel, A., Klingberg, T., & Jayaram-Lindström, N. (2019). Working memory training in alcohol use disorder: A randomized controlled trial. Alcoholism: Clinical and Experimental Research, 43(1), 135146. doi:10.1111/acer.13910.CrossRefGoogle Scholar
Laczi, F., Van Ree, J. M., Balogh, L., Szász, A., Járdánházy, T., Wágner, A., … De Wied, D. (1983). Lack of effect of desglycinamide-arginine-vasopressin (DGAVP) on memory in patients with Korsakoff's syndrome. Acta Endocrinologica, 104(2), 177182. doi:10.1530/acta.0.1040177.CrossRefGoogle Scholar
Lange, B. S., Requejo, P., Flynn, S. M., Rizzo, A. A., Valero-Cuevas, F. J., Baker, L., & Winstein, C. (2010). The potential of virtual reality and gaming to assist successful aging with disability. Physical Medicine and Rehabilitation Clinics of North America, 21(2), 339356. doi:10.1016/j.pmr.2009.12.007.CrossRefGoogle Scholar
Luykx, H. J., Dorresteijn, L. D. A., Haffmans, P. M. J., Bonebakker, A., Kerkmeer, M., & Hendriks, V. M. (2008). Rivastigmine in Wernicke-Korsakoff's syndrome: Five patients with rivastigmine showed no more improvement than five patients without rivastigmine. Alcohol and Alcoholism, 43(1), 7072. doi:10.1093/alcalc/agm158.CrossRefGoogle Scholar
Mair, R. G., & McEntee, W. J. (1986). Cognitive enhancement in Korsakoff's psychosis by clonidine: A comparison with l-Dopa and Ephedrine. Psychopharmacology, 88(3), 374380. doi:10.1007/BF00180841.CrossRefGoogle Scholar
Manning, V., Verdejo-Garcia, A., & Lubman, D. I. (2017). Neurocognitive impairment in addiction and opportunities for intervention. Current Opinion in Behavioral Sciences, 13, 4045. doi:10.1016/j.cobeha.2016.10.003.CrossRefGoogle Scholar
Martin, P. R. (1989). Effective pharmacotherapy of alcoholic amnestic disorder with fluvoxamine. Archives of General Psychiatry, 46(7), 617. doi:10.1001/archpsyc.1989.01810070043008.CrossRefGoogle Scholar
Martin, P. R., Adinoff, B., Lane, E., Stapleton, J. M., Bone, G. A. H., Weingartner, H., … Eckardt, M. J. (1995). Fluvoxamine treatment of alcoholic amnestic disorder. European Neuropsychopharmacology, 5(1), 2733. doi:10.1016/0924-977X(94)00129-Y.CrossRefGoogle Scholar
Mccallum, S. (2012). Gamification and serious games for personalized health. Studies in Health Technology and Informatics, 177, 8596. 10.3233/978-1-61499-069-7-85.Google Scholar
Moerman-van den Brink, W. G., van Aken, L., Verschuur, E. M. L., Walvoort, S. J. W., Egger, J. I. M., & Kessels, R. P. C. (2019). Executive dysfunction in patients with Korsakoff's syndrome: A theory-driven approach. Alcohol and Alcoholism (Oxford, Oxfordshire), 54(1), 2329. doi:10.1093/alcalc/agy078.CrossRefGoogle Scholar
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group, (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. doi:10.1371/journal.pmed.1000097.CrossRefGoogle Scholar
Moraleda Barreno, E., Domínguez-Salas, S., Díaz-Batanero, C., Lozano, ÓM, Lorca Marín, J. A., & Verdejo-García, A. (2019). Specific aspects of cognitive impulsivity are longitudinally associated with lower treatment retention and greater relapse in therapeutic community treatment. Journal of Substance Abuse Treatment, 96, 3338. doi:10.1016/J.JSAT.2018.10.004.CrossRefGoogle Scholar
Mulhauser, K., Weinstock, J., Ruppert, P., & Benware, J. (2018). Changes in neuropsychological status during the initial phase of abstinence in alcohol use disorder: Neurocognitive impairment and implications for clinical care. Substance Use and Misuse, 53(6), 881890. doi:10.1080/10826084.2017.1408328.CrossRefGoogle Scholar
O'Carroll, R. E., Moffoot, A. P. R., Ebmeier, K. P., & Goodwin, G. M. (1994). Effects of fluvoxamine treatment on cognitive functioning in the alcoholic Korsakoff syndrome. Psychopharmacology, 116(1), 8588. doi:10.1007/BF02244875.CrossRefGoogle Scholar
O'Carroll, R. E., Moffoot, A., Ebmeier, K. P., Murray, C., & Goodwin, G. M. (1993). Korsakoff's syndrome, cognition and clonidine. Psychological Medicine, 23(2), 341347. doi:10.1017/S0033291700028440.CrossRefGoogle Scholar
O'Donnell, V. M., Pitts, W. M., & Fann, W. E. (1986). Noradrenergic and cholinergic agents in Korsakoff's syndrome. Clinical Neuropharmacology, 9(1), 6570. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3548954.CrossRefGoogle Scholar
Oliveira, J., Gameiro, F., Gamito, P., Morais, D., Lopes, P., Brito, R., & Bento, B. (2015). Cognitive stimulation of alcoholics through VR-based Instrumental Activities of Daily Living, 1417. doi:10.1145/2838944.2838948.CrossRefGoogle Scholar
Oscar-Berman, M., & Marinković, K. (2007). Alcohol: Effects on neurobehavioral functions and the brain. Neuropsychology Review, 17(3), 239257. doi:10.1007/s11065-007-9038-6.CrossRefGoogle Scholar
Oudman, E., Nijboer, T. C. W., Postma, A., Wijnia, J. W., Kerklaan, S., Lindsen, K., & Van Der Stigchel, S. (2013). Acquisition of an instrumental activity of daily living in patients with Korsakoff's syndrome: A comparison of trial and error and errorless learning. Neuropsychological Rehabilitation, 23(6), 888913. doi:10.1080/09602011.2013.835738.CrossRefGoogle Scholar
Peterson, M. A., Patterson, B., Pillman, B. M., & Battista, M. A. (2002). Cognitive recovery following alcohol detoxification: A computerised remediation study. Neuropsychological Rehabilitation, 12(1), 6374. doi:10.1080/09602010143000167.CrossRefGoogle Scholar
Pitel, A. L., Segobin, S. H., Ritz, L., Eustache, F., & Beaunieux, H. (2015). Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction. Neuroscience & Biobehavioral Reviews, 54, 3845. doi:10.1016/J.NEUBIOREV.2014.07.023.CrossRefGoogle Scholar
Platt, B., Kamboj, S. K., Italiano, T., Rendell, P. G., & Curran, H. V. (2016). Prospective memory impairments in heavy social drinkers are partially overcome by future event simulation. Psychopharmacology, 233(3), 499506. doi:10.1007/s00213-015-4145-1.CrossRefGoogle Scholar
Rehm, J., Shield, K. D., Gmel, G., Rehm, M. X., & Frick, U. (2013). Modeling the impact of alcohol dependence on mortality burden and the effect of available treatment interventions in the European Union. European Neuropsychopharmacology, 23(2), 8997. doi:10.1016/J.EURONEURO.2012.08.001.CrossRefGoogle Scholar
Rensen, Y. C. M., Egger, J. I. M., Westhoff, J., Walvoort, S. J. W., & Kessels, R. P. C. (2017). The effect of errorless learning on quality of life in patients with Korsakoff's syndrome. Neuropsychiatric Disease and Treatment, 13, 28672873. doi:10.2147/NDT.S140950.CrossRefGoogle Scholar
Rensen, Y. C. M., Egger, J. I. M., Westhoff, J., Walvoort, S. J. W., & Kessels, R. P. C. C. (2019). The effect of errorless learning on psychotic and affective symptoms, as well as aggression and apathy in patients with Korsakoff's syndrome in long-term care facilities. International Psychogeriatrics, 31(1), 3947. doi:10.1017/S1041610218000492.CrossRefGoogle Scholar
Reuster, T., Buechler, J., Winiecki, P., & Oehler, J. (2003). Influence of reboxetine on salivary MHPG concentration and cognitive symptoms among patients with alcohol-related Korsakoff's syndrome. Neuropsychopharmacology, 28(5), 974978. doi:10.1038/sj.npp.1300118.CrossRefGoogle Scholar
Ridley, N. J., Draper, B., & Withall, A. (2013). Alcohol-related dementia: An update of the evidence. Alzheimer's Research & Therapy, 5, 3. Retrieved from http://alzres.com/content/5/1/3.CrossRefGoogle Scholar
Rochat, L., & Khazaal, Y. (2019). Cognitive remediation therapy of working memory in addictive disorders: An individualized, tailored, and recovery-oriented approach. Expert Review of Neurotherapeutics, 19(4), 13. doi:10.1080/14737175.2019.1591950.CrossRefGoogle Scholar
Ros-Cucurull, E., Palma-Álvarez, R. F., Cardona-Rubira, C., García-Raboso, E., Jacas, C., Grau-López, L., … Roncero, C. (2018). Alcohol use disorder and cognitive impairment in old age patients: A 6 months follow-up study in an outpatient unit in Barcelona. Psychiatry Research, 261(October 2017), 361366. doi:10.1016/j.psychres.2017.12.069.CrossRefGoogle Scholar
Rupp, C. I. (2012). Cognitive remediation therapy during treatment for alcohol dependence. Journal of Studies on Alcohol and Drugs, 73(4), 625634. doi:10.15288/jsad.2012.73.625.CrossRefGoogle Scholar
Rustembegović, A., Kundurović, Z., Sapcanin, A., & Sofic, E. (2003). A placebo-controlled study of memantine (Ebixa) in dementia of Wernicke-Korsakoff syndrome. Medicinski Arhiv, 57(3), 149150. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12858653.Google Scholar
Sachdeva, A., Chandra, M., Choudhary, M., Dayal, P., & Anand, K. S. (2016). Alcohol-related dementia and neurocognitive impairment: A review study. International Journal of High Risk Behaviors and Addiction, 5(3), e27976. doi:10.5812/ijhrba.27976.CrossRefGoogle Scholar
Sanvisens, A., Zuluaga, P., Fuster, D., Rivas, I., Tor, J., Marcos, M., … Muga, R. (2017). Long-term mortality of patients with an alcohol-related Wernicke-Korsakoff Syndrome. Alcohol and Alcoholism (Oxford, Oxfordshire), 52(4), 466471. doi:10.1093/alcalc/agx013.CrossRefGoogle Scholar
Schwarzinger, M., Pollock, B. G., Hasan, O. S. M., Dufouil, C., Rehm, J., Baillot, S., … Group, Q. S. (2018). Contribution of alcohol use disorders to the burden of dementia in France 2008–13: A nationwide retrospective cohort study. The Lancet Public Health, 3(3), e124e132. doi:10.1016/S2468-2667(18)30022-7.CrossRefGoogle Scholar
Snider, S. E., Deshpande, H. U., Lisinski, J. M., Koffarnus, M. N., LaConte, S. M., & Bickel, W. K. (2018). Working memory training improves alcohol users’ episodic future thinking: A rate-dependent analysis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(2), 160167. doi:10.1016/j.bpsc.2017.11.002.Google Scholar
Soler González, C., Balcells Oliveró, M., & Gual Solé, A. (2014). Alcohol related brain damage. State of the art and a call for action. Adicciones, 26(3), 199207. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25314035.CrossRefGoogle Scholar
Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18(2), 203213. doi:10.1111/j.1369-1600.2011.00418.x.CrossRefGoogle Scholar
Stevens, L., Goudriaan, A. E., Verdejo-Garcia, A., Dom, G., Roeyers, H., & Vanderplasschen, W. (2015). Impulsive choice predicts short-term relapse in substance-dependent individuals attending an in-patient detoxification programme. Psychological Medicine, 45(10), 20832093. 10.1017/S003329171500001X.CrossRefGoogle Scholar
Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the P value Is not enough. Journal of Graduate Medical Education, 4(3), 279282. doi:10.4300/JGME-D-12-00156.1.CrossRefGoogle Scholar
Svanberg, J., & Evans, J. J. (2013). Neuropsychological rehabilitation in alcohol-related brain damage: A systematic review. Alcohol and Alcoholism, 48(6), 704711. doi:10.1093/alcalc/agt131.CrossRefGoogle Scholar
Swinnen, S. P., Puttemans, V., & Lamote, S. (2005). Procedural memory in Korsakoff's disease under different movement feedback conditions. Behavioural Brain Research, 159(1), 127133. doi:10.1016/j.bbr.2004.10.009.CrossRefGoogle Scholar
Tuena, C., Serino, S., Dutriaux, L., Riva, G., Piolino, P., Tuena, C., … Piolino, P. (2019). Virtual enactment effect on memory in young and aged populations: A systematic review. Journal of Clinical Medicine, 8(5), 620. doi:10.3390/jcm8050620.CrossRefGoogle Scholar
Wanmaker, S., Leijdesdorff, S. M. J., Geraerts, E., van de Wetering, B. J. M., Renkema, P. J., & Franken, I. H. A. (2018). The efficacy of a working memory training in substance use patients: A randomized double-blind placebo-controlled clinical trial. Journal of Clinical and Experimental Neuropsychology, 40(5), 473486. doi:10.1080/13803395.2017.1372367.CrossRefGoogle Scholar
Woods, A. J., Porges, E. C., Bryant, V. E., Seider, T., Gongvatana, A., Kahler, C. W., … Cohen, R. A. (2016). Current heavy alcohol consumption is associated with greater cognitive impairment in older adults. Alcoholism: Clinical and Experimental Research, 40(11), 24352444. doi:10.1111/acer.13211.CrossRefGoogle Scholar
World Health Organization (2018). Global status report on alcohol and health 2018.Google Scholar
Xu, W., Wang, H., Wan, Y., Tan, C., Li, J., Tan, L., & Yu, J.-T. (2017). Alcohol consumption and dementia risk: A dose–response meta-analysis of prospective studies. European Journal of Epidemiology, 32(1), 3142. doi:10.1007/s10654-017-0225-3.CrossRefGoogle Scholar
Supplementary material: File

Caballeria et al. supplementary material

Caballeria et al. supplementary material

Download Caballeria et al. supplementary material(File)
File 84.4 KB