Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Popovic, David
Schiltz, Kolja
Falkai, Peter
and
Koutsouleris, Nikolaos
2020.
Präzisionspsychiatrie und der Beitrag von Brain Imaging und anderen Biomarkern.
Fortschritte der Neurologie · Psychiatrie,
Vol. 88,
Issue. 12,
p.
778.
Brunoni, André Russowsky
Suen, Paulo Jeng Chian
Bacchi, Pedro Starzynski
Razza, Lais Boralli
Klein, Izio
dos Santos, Leonardo Afonso
de Souza Santos, Itamar
da Costa Lane Valiengo, Leandro
Gallucci-Neto, José
Moreno, Marina Lopes
Pinto, Bianca Silva
de Cássia Silva Félix, Larissa
de Sousa, Juliana Pereira
Viana, Maria Carmen
Forte, Pamela Marques
de Altisent Oliveira Cardoso, Marcia Cristina
Bittencourt, Marcio Sommer
Pelosof, Rebeca
de Siqueira, Luciana Lima
Fatori, Daniel
Bellini, Helena
Bueno, Priscila Vilela Silveira
Passos, Ives Cavalcante
Nunes, Maria Angelica
Salum, Giovanni Abrahão
Bauermeister, Sarah
Smoller, Jordan W.
Lotufo, Paulo Andrade
and
Benseñor, Isabela Martins
2021.
Prevalence and risk factors of psychiatric symptoms and diagnoses before and during the COVID-19 pandemic: findings from the ELSA-Brasil COVID-19 mental health cohort.
Psychological Medicine,
p.
1.
Lin, Shaowu
Wu, Yafei
and
Fang, Ya
2022.
A hybrid machine learning model of depression estimation in home-based older adults: a 7-year follow-up study.
BMC Psychiatry,
Vol. 22,
Issue. 1,
Pramanik, Rwittika
Khare, Sandali
Harshvardhan, G. M.
and
Gourisaria, Mahendra Kumar
2022.
Advances in Data and Information Sciences.
Vol. 318,
Issue. ,
p.
233.
Barbosa, Elizabeth Leite
Moreno, Arlinda B.
Van Duinkerken, Eelco
Lotufo, Paulo
Barreto, Sandhi Maria
Giatti, Luana
Nunes, Maria Angélica
Viana, Maria Carmen
Figueiredo, Roberta
Chor, Dóra
and
Griep, Rosane Harter
2022.
The association between diabetes mellitus and incidence of depressive episodes is different based on sex: insights from ELSA-Brasil.
Therapeutic Advances in Endocrinology and Metabolism,
Vol. 13,
Issue. ,
Fatori, Daniel
Suen, Paulo
Bacchi, Pedro
Afonso, Leonardo
Klein, Izio
Cavendish, Beatriz A.
Lee, Younga H.
Liu, Zhaowen
Bauermeister, Joshua
Moreno, Marina L.
Viana, Maria Carmen
Goulart, Alessandra C.
Santos, Itamar S.
Bauermeister, Sarah
Smoller, Jordan
Lotufo, Paulo
Benseñor, Isabela M.
and
Brunoni, André R.
2022.
Trajectories of common mental disorders symptoms before and during the COVID-19 pandemic: findings from the ELSA-Brasil COVID-19 Mental Health Cohort.
Social Psychiatry and Psychiatric Epidemiology,
Vol. 57,
Issue. 12,
p.
2445.
Galioulline, Herman
Frässle, Stefan
Harrison, Samuel J.
Pereira, Inês
Heinzle, Jakob
and
Stephan, Klaas Enno
2023.
Predicting future depressive episodes from resting-state fMRI with generative embedding.
NeuroImage,
Vol. 273,
Issue. ,
p.
119986.
Guiñazú, María Flavia
González, Mauricio
Ruiz, Rocío B.
Hernández, Víctor
Diez, Sergio Barroilhet
and
Velásquez, Juan D.
2023.
A novel depression risk prediction model based on data fusion from Chilean National Health Surveys to diagnose risk depression among patients with mood disorders.
Information Fusion,
Vol. 100,
Issue. ,
p.
101960.
Song, Yipeng
Qian, Lei
Sui, Jie
Greiner, Russell
Li, Xin-min
Greenshaw, Andrew J.
Liu, Yang S.
and
Cao, Bo
2023.
Prediction of depression onset risk among middle-aged and elderly adults using machine learning and Canadian Longitudinal Study on Aging cohort.
Journal of Affective Disorders,
Vol. 339,
Issue. ,
p.
52.
Rabelo-da-Ponte, Francisco Diego
de Azevedo Cardoso, Taiane
Kapczinski, Flavio
and
Passos, Ives Cavalcante
2023.
Digital Mental Health.
p.
207.
Lin, Shaowu
Wu, Yafei
He, Lingxiao
and
Fang, Ya
2023.
Prediction of depressive symptoms onset and long-term trajectories in home-based older adults using machine learning techniques.
Aging & Mental Health,
Vol. 27,
Issue. 1,
p.
8.
Mao, Lingyun
Hong, Xin
and
Hu, Maorong
2024.
Identifying neuroimaging biomarkers in major depressive disorder using machine learning algorithms and functional near-infrared spectroscopy (fNIRS) during verbal fluency task.
Journal of Affective Disorders,
Vol. 365,
Issue. ,
p.
9.
Montorsi, Carlotta
Fusco, Alessio
Van Kerm, Philippe
and
Bordas, Stéphane P.A.
2024.
Predicting depression in old age: Combining life course data with machine learning.
Economics & Human Biology,
Vol. 52,
Issue. ,
p.
101331.
Park, Yoonseo
Park, Sewon
and
Lee, Munjae
2024.
Effectiveness of artificial intelligence in detecting and managing depressive disorders: Systematic review.
Journal of Affective Disorders,
Vol. 361,
Issue. ,
p.
445.
Jin, Longjie
Cui, Hualei
Zhang, Peiyuan
and
Cai, Chunquan
2024.
Early diagnostic value of home video–based machine learning in autism spectrum disorder: a meta-analysis.
European Journal of Pediatrics,
Vol. 184,
Issue. 1,
Liu, Yang S.
Talarico, Fernanda
Metes, Dan
Song, Yipeng
Wang, Mengzhe
Kiyang, Lawrence
Wearmouth, Dori
Vik, Shelly
Wei, Yifeng
Zhang, Yanbo
Hayward, Jake
Ahmed, Ghalib
Gaskin, Ashley
Greiner, Russell
Greenshaw, Andrew
Alexander, Alex
Janus, Magdalena
Cao, Bo
and
McGinnis, Ryan S.
2024.
Early identification of children with Attention-Deficit/Hyperactivity Disorder (ADHD).
PLOS Digital Health,
Vol. 3,
Issue. 11,
p.
e0000620.
Gill, Rupali
Singh, Jaiteg
Hooda, Susheela
and
Srivastava, Durgesh
2024.
Delineating emotional differences between depressed and non-depressed individuals using a novel multimodal framework.
Multimedia Tools and Applications,