Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T17:16:31.121Z Has data issue: false hasContentIssue false

Plasma acetyl-l-carnitine and l-carnitine in major depressive episodes: a case–control study before and after treatment

Published online by Cambridge University Press:  14 October 2021

Abd El Kader Ait Tayeb*
Affiliation:
CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
Romain Colle
Affiliation:
CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
Khalil El-Asmar
Affiliation:
CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
Kenneth Chappell
Affiliation:
CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
Cécile Acquaviva-Bourdain
Affiliation:
Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, Bron, France
Denis J. David
Affiliation:
CESP, MOODS Team, INSERM, Faculté de Pharmacie, Univ Paris-Saclay, Châtenay-Malabry, France
Séverine Trabado
Affiliation:
INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
Philippe Chanson
Affiliation:
INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
Bruno Feve
Affiliation:
Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris F-75012, France
Laurent Becquemont
Affiliation:
CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France Centre de Recherche Clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
Céline Verstuyft
Affiliation:
CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
Emmanuelle Corruble
Affiliation:
CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
*
Author for correspondence: Abd El Kader Ait Tayeb, E-mail: [email protected]

Abstract

Background

Major depressive disorder (MDD) is the main cause of disability worldwide, its outcome is poor, and its underlying mechanisms deserve a better understanding. Recently, peripheral acetyl-l-carnitine (ALC) has been shown to be lower in patients with major depressive episodes (MDEs) than in controls. l-Carnitine is involved in mitochondrial function and ALC is its short-chain acetyl-ester. Our first aim was to compare the plasma levels of l-carnitine and ALC, and the l-carnitine/ALC ratio in patients with a current MDE and healthy controls (HCs). Our second aim was to assess their changes after antidepressant treatment.

Methods

l-Carnitine and ALC levels and the carnitine/ALC ratio were measured in 460 patients with an MDE in a context of MDD and in 893 HCs. Depressed patients were re-assessed after 3 and 6 months of antidepressant treatment for biology and clinical outcome.

Results

As compared to HC, depressed patients had lower ALC levels (p < 0.00001), higher l-carnitine levels (p < 0.00001) and higher l-carnitine/ALC ratios (p < 0.00001). ALC levels increased [coefficient: 0.18; 95% confidence interval (CI) 0.12–0.24; p < 0.00001], and l-carnitine levels (coefficient: −0.58; 95% CI −0.75 to −0.41; p < 0.00001) and l-carnitine/ALC ratios (coefficient: −0.41; 95% CI −0.47 to −0.34; p < 0.00001), decreased after treatment. These parameters were completely restored after 6 months of antidepressant. Moreover, the baseline l-carnitine/ALC ratio predicted remission after 3 months of treatment (odds ratio = 1.14; 95% CI 1.03–1.27; p = 0.015).

Conclusions

Our data suggest a decreased mitochondrial metabolism of l-carnitine into ALC during MDE. This decreased mitochondrial metabolism is restored after a 6-month antidepressant treatment. Moreover, the magnitude of mitochondrial dysfunction may predict remission after 3 months of antidepressant treatment. New strategies targeting mitochondria should be explored to improve treatments of MDD.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These two authors contributed equally to this work.

References

Ahmed, A. T., MahmoudianDehkordi, S., Bhattacharyya, S., Arnold, M., Liu, D., Neavin, D., … Kaddurah-Daouk, R. (2020). Acylcarnitine metabolomic profiles inform clinically-defined major depressive phenotypes. Journal of Affective Disorders, 264, 9097. doi: 10.1016/j.jad.2019.11.122CrossRefGoogle ScholarPubMed
Bersani, G., Meco, G., Denaro, A., Liberati, D., Colletti, C., Nicolai, R., … Koverech, A. (2013). l-Acetylcarnitine in dysthymic disorder in elderly patients: A double-blind, multicenter, controlled randomized study vs. fluoxetine. European Neuropsychopharmacology, 23(10), 12191225. doi: 10.1016/j.euroneuro.2012.11.013CrossRefGoogle ScholarPubMed
Bigio, B., Mathé, A. A., Sousa, V. C., Zelli, D., Svenningsson, P., McEwen, B. S., & Nasca, C. (2016). Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: Implications for treatment resistance. Proceedings of the National Academy of Sciences, 113(28), 79067911. doi: 10.1073/pnas.1603111113CrossRefGoogle ScholarPubMed
Carrozzino, D., Patierno, C., Fava, G. A., & Guidi, J. (2020). The Hamilton rating scales for depression: A critical review of clinimetric properties of different versions. Psychotherapy and Psychosomatics, 89(3), 133150. doi: 10.1159/000506879CrossRefGoogle ScholarPubMed
Chanson, P., Arnoux, A., Mavromati, M., Brailly-Tabard, S., Massart, C., Young, & J., … for the VARIETE Investigators (2016). Reference values for IGF-I serum concentrations: Comparison of six immunoassays. The Journal of Clinical Endocrinology & Metabolism, 101(9), 34503458. doi:10.1210/jc.2016–1257CrossRefGoogle ScholarPubMed
Cherix, A., Larrieu, T., Grosse, J., Rodrigues, J., McEwen, B., Nasca, C., … Sandi, C. (2020). Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-l-carnitine. eLife, 9, e50631. doi: 10.7554/eLife.50631CrossRefGoogle ScholarPubMed
Chiu, K. M., Schmidt, M. J., Havighurst, T. C., Shug, A. L., Daynes, R. A., Keller, E. T., & Gravenstein, S. (1999). Correlation of serum L-carnitine and dehydro-epiandrosterone sulphate levels with age and sex in healthy adults. Age and Ageing, 28(2), 211216. doi: 10.1093/ageing/28.2.211CrossRefGoogle ScholarPubMed
Corruble, E., El Asmar, K., Trabado, S., Verstuyft, C., Falissard, B., Colle, R., … Becquemont, L. (2015). Treating major depressive episodes with antidepressants can induce or worsen metabolic syndrome: Results of the METADAP cohort. World Psychiatry, 14(3), 366367. doi: 10.1002/wps.20260CrossRefGoogle ScholarPubMed
Gardner, A., & Boles, R. G. (2011). Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(3), 730743. doi: 10.1016/j.pnpbp.2010.07.030CrossRefGoogle ScholarPubMed
Girardi, P., Pompili, M., Innamorati, M., Mancini, M., Serafini, G., Mazzarini, L., … Baldessarini, R. J. (2009). Duloxetine in acute major depression: Review of comparisons to placebo and standard antidepressants using dissimilar methods. Human Psychopharmacology: Clinical and Experimental, 24(3), 177190. doi: 10.1002/hup.1005CrossRefGoogle ScholarPubMed
Gong, Y., Chai, Y., Ding, J.-H., Sun, X.-L., & Hu, G. (2011). Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neuroscience Letters, 488(1), 7680. doi: 10.1016/j.neulet.2010.11.006CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery & Psychiatry, 23(1), 5662. doi: 10.1136/jnnp.23.1.56CrossRefGoogle ScholarPubMed
Jensen, N. J., Wodschow, H. Z., Nilsson, M., & Rungby, J. (2020). Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. International Journal of Molecular Sciences, 21(22), 8767. doi: 10.3390/ijms21228767CrossRefGoogle ScholarPubMed
Jones, L. L., McDonald, D. A., & Borum, P. R. (2010). Acylcarnitines: Role in brain. Progress in Lipid Research, 49(1), 6175. doi: 10.1016/j.plipres.2009.08.004CrossRefGoogle ScholarPubMed
Kellner, C. H., Fink, M., Knapp, R., Petrides, G., Husain, M., Rummans, T., … Malur, C. (2005). Relief of expressed suicidal intent by ECT: A consortium for research in ECT study. American Journal of Psychiatry, 162(5), 977982. doi: 10.1176/appi.ajp.162.5.977CrossRefGoogle Scholar
Lau, T., Bigio, B., Zelli, D., McEwen, B. S., & Nasca, C. (2017). Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant. Molecular Psychiatry, 22(2), 227234. doi: 10.1038/mp.2016.68CrossRefGoogle ScholarPubMed
Ledinek, A. H., Sajko, M. C., & Rot, U. (2013). Evaluating the effects of amantadin, modafinil and acetyl-l-carnitine on fatigue in multiple sclerosis – Result of a pilot randomized, blind study. Clinical Neurology and Neurosurgery, 115, S86S89. doi: 10.1016/j.clineuro.2013.09.029CrossRefGoogle ScholarPubMed
Loeb, E., El Asmar, K., Trabado, S., Gressier, F., Colle, R., Rigal, A., … Corruble, E. (2020). Nitric oxide synthase activity in major depressive episodes before and after antidepressant treatment: Results of a large case–control treatment study. Psychological Medicine, 110. doi: 10.1017/S0033291720001749Google ScholarPubMed
MahmoudianDehkordi, S., Ahmed, A. T., Bhattacharyya, S., Han, X., Baillie, R. A., Arnold, M., … Kaddurah-Daouk, R., The Mood Disorders Precision Medicine Consortium (MDPMC) (2021). Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. Translational Psychiatry, 11(1), 153. doi:10.1038/s41398-020-01097-6CrossRefGoogle ScholarPubMed
Mallinckrodt, C. H., Sanger, T. M., Dubé, S., DeBrota, D. J., Molenberghs, G., Carroll, R. J., … Tollefson, G. D. (2003). Assessing and interpreting treatment effects in longitudinal clinical trials with missing data. Biological Psychiatry, 53(8), 754760. doi: 10.1016/S0006-3223(02)01867-XCrossRefGoogle ScholarPubMed
Manji, H., Kato, T., Di Prospero, N. A., Ness, S., Beal, M. F., Krams, M., & Chen, G. (2012). Impaired mitochondrial function in psychiatric disorders. Nature Reviews Neuroscience, 13(5), 293307. doi: 10.1038/nrn3229CrossRefGoogle ScholarPubMed
Mihalik, S. J., Goodpaster, B. H., Kelley, D. E., Chace, D. H., Vockley, J., Toledo, F. G. S., & DeLany, J. P. (2010). Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity, 18(9), 16951700. doi: 10.1038/oby.2009.510CrossRefGoogle ScholarPubMed
Moaddel, R., Shardell, M., Khadeer, M., Lovett, J., Kadriu, B., Ravichandran, S., … Zarate, C. A. (2018). Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology, 235(10), 30173030. doi: 10.1007/s00213-018-4992-7CrossRefGoogle ScholarPubMed
Nasca, C., Bigio, B., Lee, F. S., Young, S. P., Kautz, M. M., Albright, A., … Rasgon, N. (2018). Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proceedings of the National Academy of Sciences, 115(34), 86278632. doi: 10.1073/pnas.1801609115CrossRefGoogle ScholarPubMed
Nasca, C., Xenos, D., Barone, Y., Caruso, A., Scaccianoce, S., Matrisciano, F., … Nicoletti, F. (2013). L-Acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proceedings of the National Academy of Sciences, 110(12), 48044809. doi: 10.1073/pnas.1216100110CrossRefGoogle ScholarPubMed
Nie, L., Liang, J., Shan, F., Xu, Y., Yan, C., Zhou, X., … Xia, Q. (2021). A UPLC–MS/MS method for determination of endogenous l-carnitine and acetyl-l-carnitine in serum of patients with depression. Biomedical Chromatography, 35(3). e4991. doi: 10.1002/bmc.4991CrossRefGoogle ScholarPubMed
Ozomaro, U., Wahlestedt, C., & Nemeroff, C. B. (2013). Personalized medicine in psychiatry: Problems and promises. BMC Medicine, 11(1), 132. doi: 10.1186/1741-7015-11-132CrossRefGoogle Scholar
Pettegrew, J. W., Levine, J., Gershon, S., Stanley, J. A., Servan-Schreiber, D., Panchalingam, K., & McClure, R. J. (2002). 31P-MRS Study of acetyl-l-carnitine treatment in geriatric depression: Preliminary results. Bipolar Disorders, 4(1), 6166. doi: 10.1034/j.1399-5618.2002.01180.xCrossRefGoogle ScholarPubMed
Pettegrew, J. W., Levine, J., & McClure, R. J. (2000). Acetyl-l-carnitine physical-chemical, metabolic, and therapeutic properties: Relevance for its mode of action in Alzheimer's disease and geriatric depression. Molecular Psychiatry, 5(6), 616632. doi: 10.1038/sj.mp.4000805CrossRefGoogle ScholarPubMed
Pompili, M., Serafini, G., Innamorati, M., Venturini, P., Fusar-Poli, P., Sher, L., … Girardi, P. (2013). Agomelatine, a novel intriguing antidepressant option enhancing neuroplasticity: A critical review. The World Journal of Biological Psychiatry, 14(6), 412431. doi: 10.3109/15622975.2013.765593CrossRefGoogle ScholarPubMed
Post, R. M. (2018). Myriad of implications of acetyl-l-carnitine deficits in depression. Proceedings of the National Academy of Sciences, 115(34), 84758477. doi: 10.1073/pnas.1811389115CrossRefGoogle ScholarPubMed
Pu, J., Liu, Y., Zhang, H., Tian, L., Gui, S., Yu, Y., … Xie, P. (2020). An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Molecular Psychiatry. doi: 10.1038/s41380-020-0645-4Google ScholarPubMed
Pulvirenti, G., Valerio, C., Spadaro, F., D'Agata, V., Freni, V., Nardo, L., & Drago, F. (1990). Acetylcarnitine reduces the immobility of rats in a despair test (constrained swim). Behavioral and Neural Biology, 54(2), 110114. doi: 10.1016/0163-1047(90)91296-NCrossRefGoogle Scholar
Reuter, S. E., & Evans, A. M. (2012). Carnitine and acylcarnitines. Clinical Pharmacokinetics, 51(9), 553572. doi: 10.1007/BF03261931CrossRefGoogle ScholarPubMed
Rezin, G. T., Amboni, G., Zugno, A. I., Quevedo, J., & Streck, E. L. (2009). Mitochondrial dysfunction and psychiatric disorders. Neurochemical Research, 34(6), 10211029. doi: 10.1007/s11064-008-9865-8CrossRefGoogle ScholarPubMed
Rossini, M., Munno, O. D., Valentini, G., Bianchi, G., Biasi, G., Cacace, E., … Adami, S. (2007). Double-blind, multicenter trial comparing acetyl l-carnitine with placebo in the treatment of fibromyalgia patients. Clinical and Experimental Rheumatology, 25(2), 182188.Google ScholarPubMed
Rotroff, D. M., Corum, D. G., Motsinger-Reif, A., Fiehn, O., Bottrel, N., Drevets, W. C., … Kaddurah-Daouk, R. (2016). Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: New mechanistic insights for rapid acting antidepressants. Translational Psychiatry, 6(9), e894e894. doi: 10.1038/tp.2016.145CrossRefGoogle ScholarPubMed
Rush, A. J., Kraemer, H. C., Sackeim, H. A., Fava, M., Trivedi, M. H., Frank, E., … Schatzberg, A. F. (2006). Report by the ACNP task force on response and remission in major depressive disorder. Neuropsychopharmacology, 31(9), 18411853. doi: 10.1038/sj.npp.1301131CrossRefGoogle ScholarPubMed
Rush, A. J., Trivedi, M. H., Ibrahim, H. M., Carmody, T. J., Arnow, B., Klein, D. N., … Keller, M. B. (2003). The 16-item quick inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biological Psychiatry, 54(5), 573583. doi: 10.1016/S0006-3223(02)01866-8CrossRefGoogle ScholarPubMed
Sharma, S., & Akundi, R. S. (2019). Mitochondria: A connecting link in the major depressive disorder jigsaw. Current Neuropharmacology, 17(6), 550562. doi: 10.2174/1570159X16666180302120322CrossRefGoogle ScholarPubMed
Tolu, P., Masi, F., Leggio, B., Scheggi, S., Tagliamonte, A., Graziella De Montis, M., & Gambarana, C. (2002). Effects of long-term acetyl-l-carnitine administration in rats: I. Increased dopamine output in mesocorticolimbic areas and protection toward acute stress exposure. Neuropsychopharmacology, 27(3), 410420. doi: 10.1016/S0893-133X(02)00306-8CrossRefGoogle Scholar
Trabado, S., Al-Salameh, A., Croixmarie, V., Masson, P., Corruble, E., Fève, B., … Chanson, P. (2017). The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age. PLoS One, 12(3), e0173615. doi: 10.1371/journal.pone.0173615CrossRefGoogle ScholarPubMed
Trivedi, M. H., Rush, A. J., Wisniewski, S. R., Nierenberg, A. A., Warden, D., Ritz, L., … STAR*D Study Team (2006). Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. American Journal of Psychiatry, 163(1), 2840. doi:10.1176/appi.ajp.163.1.28CrossRefGoogle ScholarPubMed
Veronese, N., Stubbs, B., Solmi, M., Ajnakina, O., Carvalho, A. F., & Maggi, S. (2018). Acetyl-l-carnitine supplementation and the treatment of depressive symptoms: A systematic review and meta-analysis. Psychosomatic Medicine, 80(2), 154159. doi: 10.1097/PSY.0000000000000537CrossRefGoogle ScholarPubMed
Wang, W., Lu, Y., Xue, Z., Li, C., Wang, C., Zhao, X., … Zhou, W. (2015). Rapid-acting antidepressant-like effects of acetyl-l-carnitine mediated by PI3K/AKT/BDNF/VGF signaling pathway in mice. Neuroscience, 285, 281291. doi: 10.1016/j.neuroscience.2014.11.025CrossRefGoogle ScholarPubMed
WHO (2017). Depression and other common mental disorders. Global health estimates. World Health Organization. https://www.who.int/publications/i/item/depression-global-health-estimates.Google Scholar
Xie, X., Shen, Q., Yu, C., Xiao, Q., Zhou, J., Xiong, Z., … Fu, Z. (2020). Depression-like behaviors are accompanied by disrupted mitochondrial energy metabolism in chronic corticosterone-induced mice. The Journal of Steroid Biochemistry and Molecular Biology, 200, 105607. doi: 10.1016/j.jsbmb.2020.105607CrossRefGoogle ScholarPubMed
Supplementary material: File

Ait Tayeb et al. supplementary material

Figures S1-S3 and Tables S1-S5

Download Ait Tayeb et al. supplementary material(File)
File 608.6 KB