Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T00:49:32.709Z Has data issue: false hasContentIssue false

Patterns of cortical activity in schizophrenia

Published online by Cambridge University Press:  09 July 2009

J. Schroeder
Affiliation:
Department of Psychiatry and Institute of Psychology, Methodological Branch, University of Heidelberg, Germany; Departments of Psychiatry, University of California, Irvine and San Diego, USA
M. S. Buchsbaum*
Affiliation:
Department of Psychiatry and Institute of Psychology, Methodological Branch, University of Heidelberg, Germany; Departments of Psychiatry, University of California, Irvine and San Diego, USA
B. V. Siegel
Affiliation:
Department of Psychiatry and Institute of Psychology, Methodological Branch, University of Heidelberg, Germany; Departments of Psychiatry, University of California, Irvine and San Diego, USA
F. J. Geider
Affiliation:
Department of Psychiatry and Institute of Psychology, Methodological Branch, University of Heidelberg, Germany; Departments of Psychiatry, University of California, Irvine and San Diego, USA
R. J. Haier
Affiliation:
Department of Psychiatry and Institute of Psychology, Methodological Branch, University of Heidelberg, Germany; Departments of Psychiatry, University of California, Irvine and San Diego, USA
J. Lohr
Affiliation:
Department of Psychiatry and Institute of Psychology, Methodological Branch, University of Heidelberg, Germany; Departments of Psychiatry, University of California, Irvine and San Diego, USA
J. Wu
Affiliation:
Department of Psychiatry and Institute of Psychology, Methodological Branch, University of Heidelberg, Germany; Departments of Psychiatry, University of California, Irvine and San Diego, USA
S. G. Potkin
Affiliation:
Department of Psychiatry and Institute of Psychology, Methodological Branch, University of Heidelberg, Germany; Departments of Psychiatry, University of California, Irvine and San Diego, USA
*
1Address for correspondence: Dr Monte S. Buchsbaum, Box 1505. Mt Sinai School of Medicine, Department of Psychiatry, 1 Gustave Levy Place, New York, NY 10029, USA

Synopsis

Eighty-three patients with schizophrenia and 47 healthy controls received positron emission tomography (PET) with 18F-2-deoxyglucose uptake while they were executing the Continuous Performance Test (CPT). The entire cortex was divided into 16 regions of interest in each hemisphere, four in each lobe of the brain, and data from corresponding right and left hemispheric regions were averaged. Data from the schizophrenic patients were subjected to a factor analysis, which revealed five factors that explained 80% of the common variance. According to their content, the factors were identified and labelled ‘parietal cortex and motor strip’, ‘associative areas’, ‘temporal cortex’, ‘hypofrontality’ (which included midfrontal and occipital areas) and ‘frontal cortex’. Hemispheric asymmetry was only confirmed for the temporal cortex. Factor weights obtained in the schizophrenic group were applied to the metabolic data of the healthy controls and factor scales computed. Schizophrenics were significantly more hypofrontal than the controls, with higher values on the ‘parietal cortex and motor strip’ factor and a trend towards higher values in the temporal cortex. A canonical discriminant analysis confirmed that the ‘hypofrontality’ and ‘parietal cortex and motor strip’ factors accurately separated the schizophrenic group from the healthy controls. Hemispheric asymmetry was only confirmed for the temporal lobe. Significantly higher factor scores for the left temporal lobe in schizophrenics than in normals were obtained when calculated for the right and left hemisphere separately. Taken together, our results confirm the importance of hypofrontality as a pattern of cortical metabolic rate and point to the potential importance of parietal and motor strip function in schizophrenia.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benson, D. F. & Stuss, D. T. (1986). The Frontal Lobes. Raven Press: New York.Google Scholar
Bernstein, I. H. (1988). Applied Multivariate Analysis. Springer-Verlag: New York.CrossRefGoogle Scholar
Buchsbaum, M. S. (1990). The frontal lobes, basal ganglia and temporal lobes as sites for schizophrenia. Schizophrenia Bulletin 16, 379389.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Ingvar, D. H., Kessler, R., Waters, R. N., Cappelletti, J., van Kammen, D. P., King, A. C., Johnson, J. L., Manning, R. G., Flynn, R. W., Mann, L. S., Bunney, W. E. Jr. & Sokoloff, L. (1982). Cerebral glucography with positron emission tomography. Archives of General Psychiatry 39, 251259.CrossRefGoogle Scholar
Buchsbaum, M. S., Holcomb, H. H., DeLisi, L. E., Cappelletti, J., King, A. C., Johnson, J., Hazlett, E., Post, R. M., Morihisa, J., Carpenter, W., Cohen, R., Pickar, D. & Kessler, R. (1984). Anteroposterior gradients in schizophrenia and affective disorders. Archives of General Psychiatry 41, 11591166.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Gillin, J. C., Wu, J., Hazlett, E., Sicotte, N. & DuPont, R. M. (1989). Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sciences 45, 13491356.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Nuechterlein, K. H., Haier, R. J., Wu, J., Sicotte, N., Hazlett, E., Asarnow, R., Potkin, S. & Guich, S. (1990). Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by positron tomography. British Journal of Psychiatry 156, 216227.CrossRefGoogle Scholar
Buchsbaum, M. S., Haier, R. J., Potkin, S. G., Nuechterlein, K., Bracha, S., Katz, M., Lohr, J., Wu, J., Lottenberg, S., Jerabek, P. A., Trenary, M., Tafalla, R., Reynolds, C. & Bunney, W. E. (1992). Fronto-striatal disorder of cerebral metabolism in never-medicated schizophrenics. Archives of General Psychiatry 49, 935942.CrossRefGoogle Scholar
Cornblatt, B. A., Risch, N. J., Faris, G., Friedman, D. & Erlenmeyer-Kimling, L. (1988). The Continuous Performance Test, Identical Pairs Version (CPT-IP): new findings about sustained attention in normal families. Psychiatry Research 26, 223238.CrossRefGoogle ScholarPubMed
Cornblatt, B. A., Lenzenweger, M. F. & Erlenmeyer-Kimling, L. (1989). The Continuous Performance Test, Identical Pairs Version (CPT-IP). II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Research 29, 6586.CrossRefGoogle Scholar
DeLisi, L. E., Buchsbaum, M. S., Holcomb, H. H., Langston, K. C., King, A. C., Kessler, R., Pickar, D., Carpenter, W. T. Jr., Morihisa, J. M., Margolin, R. & Weinberger, D. R. (1989). Increased temporal lobe glucose use in chronic schizophrenic patients. Biological Psychiatry 25, 835851.CrossRefGoogle ScholarPubMed
Geider, F. J., Rogge, K.-E. & Schaaf, H. P. (1982). Einstieg in die Faktorenanalyse. Quelle & Mayer: Heidelberg.Google Scholar
Guenther, W., Petsch, R., Steinberg, R., Moser, E., Streck, P., Heller, H., Kurtz, G. & Hippius, H. (1991). Brain dysfunction during motor activation and corpus callosum alterations in schizophrenia measured by cerebral blood flow and magnetic resonance imaging. Biological Psychiatry 29, 535555.CrossRefGoogle Scholar
Haier, R. J., Siegel, B. V., MacLachlan, A., Soderling, E., Lottenberg, S. & Buchsbaum, M. S. (1991). Regional glucose metabolic changes after learning a complex visuospatial motor task: a positron emission tomographic study. Brain Research 570, 134143.CrossRefGoogle Scholar
Harris, G. J., Links, J. M., Pearlson, G. D. & Camargo, E. E. (1991). Cortical circumferential profile of SPECT cerebral perfusion in Alzheimer's disease. Psychiatry Research: Neuroimaging 40, 167180.CrossRefGoogle ScholarPubMed
Heinrichs, D. W. & Buchanan, R. W. (1988). Significance and meaning of neurological signs in schizophrenia. American Journal of Psychiatry 145, 1118.Google ScholarPubMed
Hoffman, R. E., Buchsbaum, M. S., Escobar, M. D., Makuch, R. W., Nuechterlein, K. H. & Guich, S. M. (1991). EEG coherence of prefrontal areas in normal and schizophrenic males during perceptual activation. Journal of Neuropsychiatry and Clinical Neurosciences 3, 169175.Google ScholarPubMed
Horwitz, B., Swedo, S. E., Grady, C. L., Pietrini, P., Schapiro, M. B., Rapoport, J. L. & Rapoport, S. I. (1991). Cerebral metabolic pattern in obsessive–compulsive disorder: altered intercorrelations between regional rates of glucose utilization. Psychiatry Research: Neuroimaging 40, 221237.CrossRefGoogle ScholarPubMed
Ingvar, D. H. & Franzen, G. 91974). Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica 50, 425462.CrossRefGoogle Scholar
Kraepelin, E. (1913). Psychiatrie Ein Lehrbuch für Studierende und Ärzte. Band III, Teil 2. 8. Auflage. Johann Ambrosius Barth Verlag: Leipzig.Google Scholar
Kraus, A. (1974). Stoerungen der Wahrnehmung und des Leiberlebens beim Parkinsonismus. Klinischer Beitrag zur Theorie der Einheit von Wahrnehmen und Bewegung. Nervenarzt 45, 639646.Google Scholar
LaBerge, D. (1994). Thalamic and cortical mechanisms of attention suggested by recent positron emission tomographic experiments. Journal of Cognitive Neuroscience 2, 358372.CrossRefGoogle Scholar
Lukoff, D., Nuechterlein, K. H. & Ventura, J. (1986). Manual for expanded Brief Psychiatric Rating Scale (BPRS). Schizophrenia Bulletin 12, 594602.Google Scholar
Mirsky, A. F. (1987). Behavioral and psychophysiological markers of disordered attention. Environmental Healthy Perspectives 74, 191199.CrossRefGoogle ScholarPubMed
Nuechterlein, K. H. (1983). Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. Journal of Abnormal Psychology 92, 428.CrossRefGoogle ScholarPubMed
Nuechterlein, K. H., Parasuraman, R. & Jiang, Q. (1983). Visual sustained attention: image degradation produces rapid decrement over time. Science 220, 327329.CrossRefGoogle ScholarPubMed
Overall, J. E. & Gorham, D. R. (1962). The Brief Psychiatric Rating Scale. Psychological Reports 10, 799812.CrossRefGoogle Scholar
Pandya, D. N. & Yeterian, E. H. (1985). Architecture and connections of cortical association areas. In Cerebral Cortex: Association and Auditory Cortices, vol. 4 (ed. Peters, A. and Jones, E. G.), pp. 361. Plenum Press: New York.CrossRefGoogle Scholar
Petersen, S. E., Corbetta, M., Miezin, F. M. & Dobmeyer, S. M. (1989). Selective attention modulates visual processing of form, color and velocity. III. Areas related to higher-order selective processes. Journal of Neuroscience 15, 624.Google Scholar
SAS Institute. (1990). SAS Language (6th edn). SAS Institute: Raleigh, NC.Google Scholar
Schroeder, J., Niethammer, R., Geider, F.-J., Reitz, Ch., Binkert, M., Jauss, M. & Sauer, H. (1992). Neurological soft signs in schizophrenia. Schizophrenia Research 6, 2530.CrossRefGoogle Scholar
Schroeder, J., Richter, P., Geider, F. J., Niethammer, R., Binkert, M., Rietz, Ch. & Sauer, H. (1993). Diskrete motorische und sensorische Storungen in Akutverlauf endogener Psychosen. Zeitschrift für klinische Psychologie, Psychopathologie und Psychotherapie 41, 190206.Google Scholar
Siegel, B. V., Asarnow, R., Tanguay, P., Call, J. D., Abel, L., Ho, A., Lott, I. & Buchsbaum, M. S. (1992). Regional cerebral glucose metabolism and attention in adults with a history of childhood autism. Journal of Neuropsychiatry and Clinical Neurosciences 4, 406414.Google ScholarPubMed
Volkow, N. D. & Tancredi, L. R. (1991). Biological correlates of mental activity studies with PET. American Journal of Psychiatry 148, 439442.Google Scholar
Volkow, N. D., Brodie, J. D., Wolf, A. P., Gomez-Mont, F., Cancro, R., Van Gelder, P., Russell, J. A. G. & Overall, J. (1986). Brain organization in schizophrenia. Journal of Cerebral Blood Flow and Metabolism 6, 441446.CrossRefGoogle ScholarPubMed
Walker, E. & Green, M. (1982). Motor proficiency and attentional-task performance by psychotic patients. Journal of Abnormal Psychology 91, 261268.CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F. & Illowsky, B. P. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry 45, 609615.CrossRefGoogle ScholarPubMed
Wing, J. K., Cooper, J. E. & Sartorius, N. (1974). Measurement and Classification of Psychiatric Symptoms. Cambridge University Press: London.Google Scholar