Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T17:16:12.112Z Has data issue: false hasContentIssue false

Neurofunctional mapping of reward anticipation and outcome for major depressive disorder: a voxel-based meta-analysis

Published online by Cambridge University Press:  01 September 2022

Xun Yang
Affiliation:
School of Public Policy and Administration, Chongqing University, Chongqing, 400044, China
Yueyue Su
Affiliation:
School of Public Policy and Administration, Chongqing University, Chongqing, 400044, China
Fan Yang
Affiliation:
Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, 610041, China Chengdu Chenghua District Maternal and Child Health Hospital, Sichuan University, Chengdu, 610041, China
Yuan Song
Affiliation:
School of Public Policy and Administration, Chongqing University, Chongqing, 400044, China
Jiangnan Yan
Affiliation:
School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
Ya Luo
Affiliation:
Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
Jianguang Zeng*
Affiliation:
School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
*
Author for correspondence: Jianguang Zeng, E-mail: [email protected]

Abstract

Aberrations in how people form expectations about rewards and how they respond to receiving rewards are thought to underlie major depressive disorder (MDD). However, the underlying mechanism linking the appetitive reward system, specifically anticipation and outcome, is still not fully understood. To examine the neural correlates of monetary anticipation and outcome in currently depressed subjects with MDD, we performed two separate voxel-wise meta-analyses of functional neuroimaging studies using the monetary incentive delay task. During reward anticipation, the depressed patients exhibited an increased response in the bilateral middle cingulate cortex (MCC) extending to the anterior cingulate cortex, the medial prefrontal cortex, the left inferior frontal gyrus (IFG), and the postcentral gyrus, but a reduced response in the mesolimbic circuit, including the left striatum, insula, amygdala, right cerebellum, striatum, and IFG, compared to controls. During the outcome stage, MDD showed higher activity in the left inferior temporal gyrus, and lower activity in the mesocortical pathway, including the bilateral MCC, left caudate nucleus, precentral gyrus, thalamus, cerebellum, right striatum, insula, IFG, middle frontal gyrus, and temporal pole. Our findings suggest that cMDD may be characterised by state-dependent hyper-responsivity in cortical regions during the anticipation phase, and hypo-responsivity of the mesocortico-limbic circuit across the two phases of the reward response. Our study showed dissociable neural circuit responses to monetary stimuli during reward anticipation and outcome, which help to understand the dysfunction in different aspects of reward processing, particularly motivational v. hedonic deficits in depression.

Type
Review Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Admon, R., Kaiser, R. H., Dillon, D. G., Beltzer, M., Goer, F., Olson, D. P., … Pizzagalli, D. A. (2017). Dopaminergic enhancement of striatal response to reward in major depression. American Journal of Psychiatry, 174(4), 378386. doi:10.1176/appi.ajp.2016.16010111.CrossRefGoogle ScholarPubMed
Admon, R., Nickerson, L. D., Dillon, D. G., Holmes, A. J., Bogdan, R., Kumar, P., … Pizzagalli, D. A. (2015). Dissociable cortico-striatal connectivity abnormalities in major depression in response to monetary gains and penalties. Psychological Medicine, 45(1), 121131. doi:10.1017/S0033291714001123.CrossRefGoogle ScholarPubMed
American Psychiatric Association (APA). (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Washington, DC: APA.Google Scholar
Arrondo, G., Segarra, N., Metastasio, A., Ziauddeen, H., Spencer, J., Reinders, N. R., … Murray, G. K. (2015). Reduction in ventral striatal activity when anticipating a reward in depression and schizophrenia: A replicated cross-diagnostic finding. Frontiers in Psychology, 6, 1280. doi:10.3389/fpsyg.2015.01280.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35(7), 11241143. doi:10.1111/j.1460-9568.2012.07990.x.CrossRefGoogle ScholarPubMed
Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9(1), 6573. doi:10.1016/j.coph.2008.12.014.CrossRefGoogle ScholarPubMed
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815834. doi:10.1016/j.neuron.2010.11.022.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222. doi:10.1016/s1364-6613(00)01483-2.CrossRefGoogle ScholarPubMed
Caetano, S. C., Kaur, S., Brambilla, P., Nicoletti, M., Hatch, J. P., Sassi, R. B., … Soares, J. C. (2006). Smaller cingulate volumes in unipolar depressed patients. Biological Psychiatry, 59(8), 702706. doi:10.1016/j.biopsych.2005.10.011.CrossRefGoogle ScholarPubMed
Carl, H., Walsh, E., Eisenlohr-Moul, T., Minkel, J., Crowther, A., Moore, T., … Smoski, M. J. (2016). Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder. Journal of Affective Disorders, 203, 204212. doi:10.1016/j.jad.2016.06.005.CrossRefGoogle ScholarPubMed
Coccurello, R. (2019). Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behavioural Brain Research, 372, 112041. doi:10.1016/j.bbr.2019.112041.CrossRefGoogle ScholarPubMed
Craske, M. G., Meuret, A. E., Ritz, T., Treanor, M., & Dour, H. J. (2016). Treatment for anhedonia: A neuroscience-driven approach. Depression and Anxiety, 33(10), 927938. doi:10.1002/da.22490.CrossRefGoogle ScholarPubMed
DelDonno, S. R., Mickey, B. J., Pruitt, P. J., Stange, J. P., Hsu, D. T., Weldon, A. L., … Langenecker, S. A. (2019). Influence of childhood adversity, approach motivation traits, and depression on individual differences in brain activation during reward anticipation. Biological Psychology, 146, 107709. doi:10.1016/j.biopsycho.2019.05.009.CrossRefGoogle ScholarPubMed
Der-Avakian, A., Barnes, S. A., Markou, A., & Pizzagalli, D. A. (2016). Translational assessment of reward and motivational deficits in psychiatric disorders. Current Topics in Behavioral Neurosciences, 28, 231262. doi:10.1007/7854_2015_5004.CrossRefGoogle ScholarPubMed
Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences, 35(1), 6877. doi:10.1016/j.tins.2011.11.005.CrossRefGoogle ScholarPubMed
Dichter, G. S., Kozink, R. V., McClernon, F. J., & Smoski, M. J. (2012). Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. Journal of Affective Disorders, 136(3), 11261134. doi:10.1016/j.jad.2011.09.048.CrossRefGoogle ScholarPubMed
Dimidjian, S., Hollon, S. D., Dobson, K. S., Schmaling, K. B., Kohlenberg, R. J., Addis, M. E., … Jacobson, N. S. (2006). Randomized trial of behavioral activation, cognitive therapy, and antidepressant medication in the acute treatment of adults with major depression. Journal of Consulting and Clinical Psychology, 74(4), 658670. doi:10.1037/0022-006X.74.4.658.CrossRefGoogle ScholarPubMed
Dugre, J. R., Radua, J., Carignan-Allard, M., Dumais, A., Rubia, K., & Potvin, S. (2020). Neurofunctional abnormalities in antisocial spectrum: A meta-analysis of fMRI studies on five distinct neurocognitive research domains. Neuroscience and Biobehavioral Reviews, 119, 168183. doi:10.1016/j.neubiorev.2020.09.013.CrossRefGoogle ScholarPubMed
Fan, J., Kolster, R., Ghajar, J., Suh, M., Knight, R. T., Sarkar, R., & McCandliss, B. D. (2007). Response anticipation and response conflict: An event-related potential and functional magnetic resonance imaging study. Journal of Neuroscience, 27(9), 22722282. doi:10.1523/JNEUROSCI.3470-06.2007.CrossRefGoogle ScholarPubMed
Fettes, P., Schulze, L., & Downar, J. (2017). Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: Promising therapeutic targets in psychiatric illness. Frontiers in Systems Neuroscience, 11, 25. doi:10.3389/fnsys.2017.00025.CrossRefGoogle ScholarPubMed
Forbes, E. E., Hariri, A. R., Martin, S. L., Silk, J. S., Moyles, D. L., Fisher, P. M., … Dahl, R. E. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166(1), 6473. doi:10.1176/appi.ajp.2008.07081336.CrossRefGoogle ScholarPubMed
Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. Neuroimage, 101, 5058. doi:10.1016/j.neuroimage.2014.06.058.CrossRefGoogle ScholarPubMed
Geugies, H., Mocking, R. J. T., Figueroa, C. A., Groot, P. F. C., Marsman, J. C., Servaas, M. N., … Ruhe, H. G. (2019). Impaired reward-related learning signals in remitted unmedicated patients with recurrent depression. Brain, 142(8), 25102522. doi:10.1093/brain/awz167.CrossRefGoogle ScholarPubMed
Grabenhorst, F., & Rolls, E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends in Cognitive Sciences, 15(2), 5667. doi:10.1016/j.tics.2010.12.004.CrossRefGoogle ScholarPubMed
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. doi:10.1038/npp.2009.129.CrossRefGoogle ScholarPubMed
Hagele, C., Schlagenhauf, F., Rapp, M., Sterzer, P., Beck, A., Bermpohl, F., … Heinz, A. (2015). Dimensional psychiatry: Reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology, 232(2), 331341. doi:10.1007/s00213-014-3662-7.CrossRefGoogle ScholarPubMed
Hart, H., Radua, J., Nakao, T., Mataix-Cols, D., & Rubia, K. (2013). Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: Exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry, 70(2), 185198. doi:10.1001/jamapsychiatry.2013.277.CrossRefGoogle ScholarPubMed
Hasler, G., Drevets, W. C., Manji, H. K., & Charney, D. S. (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology, 29(10), 17651781. doi:10.1038/sj.npp.1300506.CrossRefGoogle ScholarPubMed
Heilbronner, S. R., & Hayden, B. Y. (2016). Dorsal anterior cingulate cortex: A bottom-up view. Annual Review of Neuroscience, 39, 149170. doi:10.1146/annurev-neuro-070815-013952.CrossRefGoogle ScholarPubMed
Hilario, M. R., & Costa, R. M. (2008). High on habits. Frontiers in Neuroscience, 2(2), 208217. doi:10.3389/neuro.01.030.2008.CrossRefGoogle ScholarPubMed
Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638647. doi:10.1016/j.biopsych.2017.10.030.CrossRefGoogle ScholarPubMed
Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14(2), 148155. doi:10.1016/j.conb.2004.03.007.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122128. doi:10.1016/j.tics.2011.12.008.CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751. doi:10.1176/appi.ajp.2010.09091379.CrossRefGoogle Scholar
Ito, T., Yokokawa, K., Yahata, N., Isato, A., Suhara, T., & Yamada, M. (2017). Neural basis of negativity bias in the perception of ambiguous facial expression. Scientific Reports, 7(1), 420. doi:10.1038/s41598-017-00502-3.CrossRefGoogle ScholarPubMed
Kaposvari, P., Kumar, S., & Vogels, R. (2018). Statistical learning signals in macaque inferior temporal cortex. Cerebral Cortex, 28(1), 250266. doi:10.1093/cercor/bhw374.CrossRefGoogle ScholarPubMed
Keren, H., O'Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry, 175(11), 11111120. doi:10.1176/appi.ajp.2018.17101124.CrossRefGoogle ScholarPubMed
Klauser, P., Fornito, A., Lorenzetti, V., Davey, C. G., Dwyer, D. B., Allen, N. B., & Yucel, M. (2015). Cortico-limbic network abnormalities in individuals with current and past major depressive disorder. Journal of Affective Disorders, 173, 4552. doi:10.1016/j.jad.2014.10.041.CrossRefGoogle ScholarPubMed
Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63(7), 686692. doi:10.1016/j.biopsych.2007.07.023.CrossRefGoogle ScholarPubMed
Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 36833687. doi:10.1097/00001756-200112040-00016.CrossRefGoogle ScholarPubMed
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage, 12(1), 2027. doi:10.1006/nimg.2000.0593.CrossRefGoogle ScholarPubMed
Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22(3), 607615. doi:10.1093/cercor/bhr134.CrossRefGoogle ScholarPubMed
Lacerda, A. L., Keshavan, M. S., Hardan, A. Y., Yorbik, O., Brambilla, P., Sassi, R. B., … Soares, J. C. (2004). Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biological Psychiatry, 55(4), 353358. doi:10.1016/j.biopsych.2003.08.021.CrossRefGoogle ScholarPubMed
Liu, Y., Admon, R., Mellem, M. S., Belleau, E. L., Kaiser, R. H., Clegg, R., … Pizzagalli, D. A. (2020). Machine learning identifies large-scale reward-related activity modulated by dopaminergic enhancement in major depression. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 5(2), 163172. doi:10.1016/j.bpsc.2019.10.002.CrossRefGoogle ScholarPubMed
Malhi, G. S., & Mann, J. J. (2018). Depression. The Lancet, 392(10161), 22992312. doi:10.1016/s0140-6736(18)31948-2.CrossRefGoogle ScholarPubMed
Meng, C., Brandl, F., Tahmasian, M., Shao, J. M., Manoliu, A., Scherr, M., … Sorg, C. (2014). Aberrant topology of striatum's connectivity is associated with the number of episodes in depression. Brain, 137, 598609. doi:10.1093/brain/awt290.CrossRefGoogle ScholarPubMed
Meyer, J. H., Kruger, S., Wilson, A. A., Christensen, B. K., Goulding, V. S., Schaffer, A., … Kennedy, S. H. (2001). Lower dopamine transporter binding potential in striatum during depression. Neuroreport, 12(18), 41214125. doi:10.1097/00001756-200112210-00052.CrossRefGoogle ScholarPubMed
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Grp, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. doi:10.1371/journal.pmed.1000097.CrossRefGoogle ScholarPubMed
Morgan, J. K., Olino, T. M., McMakin, D. L., Ryan, N. D., & Forbes, E. E. (2013). Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiology of Disease, 52, 6674. doi:10.1016/j.nbd.2012.03.039.CrossRefGoogle ScholarPubMed
Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: The insula. Trends in Neurosciences, 32(1), 5667. doi:10.1016/j.tins.2008.09.009.CrossRefGoogle ScholarPubMed
Ng, T. H., Alloy, L. B., & Smith, D. V. (2019). Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Translational Psychiatry, 9(1), 293. doi:10.1038/s41398-019-0644-x.CrossRefGoogle ScholarPubMed
Otis, J. M., Zhu, M., Namboodiri, V. M. K., Cook, C. A., Kosyk, O., Matan, A. M., … Stuber, G. D. (2019). Paraventricular thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing. Neuron, 103(3), 423431 e424. doi:10.1016/j.neuron.2019.05.018.CrossRefGoogle ScholarPubMed
Patel, V., Chisholm, D., & Parikh, R. (2016). Addressing the burden of mental, neurological, and substance use disorders: Key messages from disease control priorities. The Lancet, 387(10028), 16721685. doi:10.1016/S0140-6736(15)00390-6.CrossRefGoogle ScholarPubMed
Philippi, C. L., Cornejo, M. D., Frost, C. P., Walsh, E. C., Hoks, R. M., Birn, R., & Abercrombie, H. C. (2018). Neural and behavioral correlates of negative self-focused thought associated with depression. Human Brain Mapping, 39(5), 22462257. doi:10.1002/hbm.24003.CrossRefGoogle ScholarPubMed
Phillips, M. L., Chase, H. W., Sheline, Y. I., Etkin, A., Almeida, J. R., Deckersbach, T., & Trivedi, M. H. (2015). Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: Neuroimaging approaches. American Journal of Psychiatry, 172(2), 124138. doi:10.1176/appi.ajp.2014.14010076.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., … Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166(6), 702710. doi:10.1176/appi.ajp.2008.08081201.CrossRefGoogle ScholarPubMed
Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35(1), 192216. doi:10.1038/npp.2009.104.CrossRefGoogle ScholarPubMed
Pulcu, E., Thomas, E. J., Trotter, P. D., McFarquhar, M., Juhasz, G., Sahakian, B. J., … Elliott, R. (2015). Social-economical decision making in current and remitted major depression. Psychological Medicine, 45(6), 13011313. doi:10.1017/S0033291714002414.CrossRefGoogle ScholarPubMed
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry, 195(5), 393402. doi:10.1192/bjp.bp.108.055046.CrossRefGoogle ScholarPubMed
Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., & Surguladze, S. (2012). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27(8), 605611. doi:10.1016/j.eurpsy.2011.04.001.CrossRefGoogle ScholarPubMed
Radua, J., Via, E., Catani, M., & Mataix-Cols, D. (2011). Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls. Psychological Medicine, 41(7), 15391550. doi:10.1017/S0033291710002187.CrossRefGoogle ScholarPubMed
Rappaport, B. I., Kandala, S., Luby, J. L., & Barch, D. M. (2020). Brain reward system dysfunction in adolescence: Current, cumulative, and developmental periods of depression. American Journal of Psychiatry, 177(8), 754763. doi:10.1176/appi.ajp.2019.19030281.CrossRefGoogle ScholarPubMed
Reinen, J. M., Whitton, A. E., Pizzagalli, D. A., Slifstein, M., Abi-Dargham, A., McGrath, P. J., … Schneier, F. R. (2021). Differential reinforcement learning responses to positive and negative information in unmedicated individuals with depression. European Neuropsychopharmacology, 53, 89100. doi:10.1016/j.euroneuro.2021.08.002.CrossRefGoogle ScholarPubMed
Rizvi, S. J., Pizzagalli, D. A., Sproule, B. A., & Kennedy, S. H. (2016). Assessing anhedonia in depression: Potentials and pitfalls. Neuroscience and Biobehavioral Reviews, 65, 2135. doi:10.1016/j.neubiorev.2016.03.004.CrossRefGoogle ScholarPubMed
Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609625. doi:10.1038/nrn3381.CrossRefGoogle ScholarPubMed
Schiller, C. E., Minkel, J., Smoski, M. J., & Dichter, G. S. (2013). Remitted major depression is characterized by reduced prefrontal cortex reactivity to reward loss. Journal of Affective Disorders, 151(2), 756762. doi:10.1016/j.jad.2013.06.016.CrossRefGoogle ScholarPubMed
Schwarz, K., Moessnang, C., Schweiger, J. I., Baumeister, S., Plichta, M. M., Brandeis, D., … Meyer-Lindenberg, A. (2020). Transdiagnostic prediction of affective, cognitive, and social function through brain reward anticipation in schizophrenia, bipolar disorder, major depression, and autism spectrum diagnoses. Schizophrenia Bulletin, 46(3), 592602. doi:10.1093/schbul/sbz075.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 23492356. doi:10.1523/JNEUROSCI.5587-06.2007.CrossRefGoogle ScholarPubMed
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), 154167. doi:10.1038/nrn2994.CrossRefGoogle ScholarPubMed
Shankman, S. A., Mittal, V. A., & Walther, S. (2020). An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study. Journal of Psychiatry and Brain Science, 5, e200007. doi:10.20900/jpbs.20200007.Google ScholarPubMed
Sharp, C., Kim, S., Herman, L., Pane, H., Reuter, T., & Strathearn, L. (2014). Major depression in mothers predicts reduced ventral striatum activation in adolescent female offspring with and without depression. Journal of Abnormal Psychology, 123(2), 298309. doi:10.1037/a0036191.CrossRefGoogle ScholarPubMed
Spati, J., Chumbley, J., Doerig, N., Brakowski, J., Grosse Holtforth, M., Seifritz, E., & Spinelli, S. (2015). Valence and agency influence striatal response to feedback in patients with major depressive disorder. Journal of Psychiatry and Neuroscience, 40(6), 394400. doi:10.1503/jpn.140225.CrossRefGoogle ScholarPubMed
Stoy, M., Schlagenhauf, F., Sterzer, P., Bermpohl, F., Hägele, C., Suchotzki, K., … Ströhle, A. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. Journal of Psychopharmacology, 26(5), 677688. doi:10.1177/0269881111416686.CrossRefGoogle ScholarPubMed
Stringaris, A., Vidal-Ribas Belil, P., Artiges, E., Lemaitre, H., Gollier-Briant, F., Wolke, S., … Paillère-Martinot, M. L. (2015). The brain's response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. American Journal of Psychiatry, 172(12), 12151223. doi:10.1176/appi.ajp.2015.14101298.CrossRefGoogle Scholar
Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience and Biobehavioral Reviews, 35(3), 537555. doi:10.1016/j.neubiorev.2010.06.006.CrossRefGoogle ScholarPubMed
Ubl, B., Kuehner, C., Kirsch, P., Ruttorf, M., Diener, C., & Flor, H. (2015). Altered neural reward and loss processing and prediction error signalling in depression. Social Cognitive and Affective Neuroscience, 10(8), 11021112. doi:10.1093/scan/nsu158.CrossRefGoogle ScholarPubMed
van Heukelum, S., Mars, R. B., Guthrie, M., Buitelaar, J. K., Beckmann, C. F., Tiesinga, P. H. E., … Havenith, M. N. (2020). Where is cingulate cortex? A cross-species view. Trends in Neurosciences, 43(5), 285299. doi:10.1016/j.tins.2020.03.007.CrossRefGoogle ScholarPubMed
Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy, 74, 2846. doi:10.1016/j.jchemneu.2016.01.010.CrossRefGoogle ScholarPubMed
Wakatsuki, Y., Ogura, Y., Hashimoto, N., Toyomaki, A., Miyamoto, T., Nakagawa, S., … Kusumi, I. (2022). Subjects with bipolar disorder showed different reward system activation than subjects with major depressive disorder in the monetary incentive delay task. Psychiatry and Clinical Neurosciences, 76(8), 393400. doi:10.1111/pcn.13429.CrossRefGoogle ScholarPubMed
Walsh, E., Carl, H., Eisenlohr-Moul, T., Minkel, J., Crowther, A., Moore, T., … Dichter, G. S. (2017). Attenuation of frontostriatal connectivity during reward processing predicts response to psychotherapy in major depressive disorder. Neuropsychopharmacology, 42(4), 831843. doi:10.1038/npp.2016.179.CrossRefGoogle ScholarPubMed
Wang, Z., Wang, X., Liu, J., Chen, J., Liu, X., Nie, G., … Kong, J. (2017). Acupuncture treatment modulates the corticostriatal reward circuitry in major depressive disorder. Journal of Psychiatric Research, 84, 1826. doi:10.1016/j.jpsychires.2016.09.014.CrossRefGoogle ScholarPubMed
Whitton, A. E., Kakani, P., Foti, D., Van't Veer, A., Haile, A., Crowley, D. J., & Pizzagalli, D. A. (2016). Blunted neural responses to reward in remitted major depression: A high-density event-related potential study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(1), 8795. doi:10.1016/j.bpsc.2015.09.007.Google ScholarPubMed
WHO. (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.Google Scholar
Yang, X., Tian, F., Zhang, H., Zeng, J., Chen, T., Wang, S., … Gong, Q. (2016). Cortical and subcortical gray matter shrinkage in alcohol-use disorders: A voxel-based meta-analysis. Neuroscience and Biobehavioral Reviews, 66, 92103. doi:10.1016/j.neubiorev.2016.03.034.CrossRefGoogle ScholarPubMed
Zhang, B., Lin, P., Shi, H. Q., Ongur, D., Auerbach, R. P., Wang, X. S., … Wang, X. (2016). Mapping anhedonia-specific dysfunction in a transdiagnostic approach: An ALE meta-analysis. Brain Imaging and Behavior, 10(3), 920939. doi:10.1007/s11682-015-9457-6.CrossRefGoogle Scholar
Zhang, W. N., Chang, S. H., Guo, L. Y., Zhang, K. L., & Wang, J. (2013). The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies. Journal of Affective Disorders, 151(2), 531539. doi:10.1016/j.jad.2013.06.039.CrossRefGoogle ScholarPubMed
Zhu, Y., Nachtrab, G., Keyes, P. C., Allen, W. E., Luo, L., & Chen, X. (2018). Dynamic salience processing in paraventricular thalamus gates associative learning. Science (New York, N.Y.), 362(6413), 423429. doi:10.1126/science.aat0481.CrossRefGoogle ScholarPubMed
Supplementary material: File

Yang et al. supplementary material

Yang et al. supplementary material

Download Yang et al. supplementary material(File)
File 125.8 KB