Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T00:53:43.680Z Has data issue: false hasContentIssue false

Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS

Published online by Cambridge University Press:  09 July 2009

T. Kato*
Affiliation:
Department of Psychiatry and the Molecular Neurobiology Research Centre, Shiga University of Medical Science, Otsu, Shiga, Japan
T. Shioiri
Affiliation:
Department of Psychiatry and the Molecular Neurobiology Research Centre, Shiga University of Medical Science, Otsu, Shiga, Japan
J. Murashita
Affiliation:
Department of Psychiatry and the Molecular Neurobiology Research Centre, Shiga University of Medical Science, Otsu, Shiga, Japan
H. Hamakawa
Affiliation:
Department of Psychiatry and the Molecular Neurobiology Research Centre, Shiga University of Medical Science, Otsu, Shiga, Japan
Y. Takahashi
Affiliation:
Department of Psychiatry and the Molecular Neurobiology Research Centre, Shiga University of Medical Science, Otsu, Shiga, Japan
T. Inubushi
Affiliation:
Department of Psychiatry and the Molecular Neurobiology Research Centre, Shiga University of Medical Science, Otsu, Shiga, Japan
S. Takahashi
Affiliation:
Department of Psychiatry and the Molecular Neurobiology Research Centre, Shiga University of Medical Science, Otsu, Shiga, Japan
*
1 Address for correspondence: Dr Tadafumi Kato, Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga, 520–21, Japan.

Synopsis

High energy phosphate metabolites were measured using phase-encoded in vivo phosphorus-31 magnetic resonance spectroscopy (31P-MRS) in both the left and right frontal lobes of 25 patients with bipolar disorder. Eleven patients were examined in the depressive state, 12 in the manic state, and 21 in the euthymic state. Twenty-one age-matched normal volunteers were also examined. The phosphocreatine (PCr) peak area percentage in the left frontal lobe in the patients in the depressive state was decreased compared with that in the normal controls. It was significantly negatively correlated with the Hamilton Rating Scale for Depression score evaluated at the time of 31P-MRS examination. The PCr peak area percentage in the right frontal lobe in the patients in the manic and the euthymic states was decreased compared with that in the controls. These results are compatible with previous reports describing reduction of glucose metabolism in the left frontal lobe in depressive patients with bipolar disorder and trait-dependent right hemisphere dysfunction in bipolar disorder.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agren, H. & Niklasson, F. (1988). Creatinine and creatine in CSF: indices of brain energy metabolism in depression. Journal of Neural Transmission 74, 5559.CrossRefGoogle ScholarPubMed
American Psychiatric Association (1987). Diagnostic and Statistical Manual of Mental Disorders, 3rd edn – Revised. American Psychiatric Press: Washington, DC.Google Scholar
Bailes, D. R., Bryant, D. J., Bydder, G. M., Case, H. A., Collins, A. G., Cox, I. J., Evans, P. R., Harman, R. R., Hall, A. S., Khenia, S., McArthur, P., Oliver, A., Rose, M. R., Ross, B. D. & Young, I. R. (1987). Localized phosphorus-31 NMR spectroscopy of normal and pathological human organs in vivo using phaseencoding techniques. Journal of Magnetic Resonance 74, 158170.Google Scholar
Baxter, L. R., Phelps, M. E., Mazziotta, J. C., Schwartz, J. M., Gerner, R. H., Selin, C. E. & Sumida, R. M. (1985). Cerebral metabolic rates for glucose in mood disorders. Archives of General Psychiatry 42, 441447.CrossRefGoogle ScholarPubMed
Baxter, L. R., Schwartz, J. M., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Selin, C. E., Gerner, R. H. & Sumida, R. M. (1989). Reduction of prefrontal cortex glucose metabolism common to three types of depression. Archives of General Psychiatry 46, 243250.CrossRefGoogle ScholarPubMed
Benson, D. F. (1984). The neurology of human emotion. Bulletin of Clinical Neurosciences 49, 2342.Google ScholarPubMed
Bottomley, P. A. (1991). The trouble with spectroscopy papers. Radiology 181, 344350.Google ScholarPubMed
Bruder, G. E., Stewart, J. W., Towey, J. P., Friedman, D., Tenke, C. E., Voglmaier, M. M., Leite, P., Cohen, P. & Quitkin, F. M. (1992). Abnormal cerebral laterality in bipolar depression: convergence of behavioral and brain event-related potential findings. Biological Psychiatry 32, 3347.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S. (1993). Positron-emission tomography and brain activity in psychiatry. In Review of Psychiatry, vol. 12 (ed. Oldham, J. M., Riba, M. B. and Tasman, A.), pp. 461485. American Psychiatric Press: Washington, DC.Google Scholar
Buchsbaum, M. S., Wu, J., DeLisi, L. E., Holcomb, H., Kessler, R., Johnson, J., King, A. C., Hazlett, K., Langston, K. & Post, R. M. (1986). Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with 2-[13F]-deoxyglucose in affective illness. Journal of Affective Disorders 10, 137152.CrossRefGoogle ScholarPubMed
Cady, E. B. (1990). Clinical Magnetic Resonance Spectroscopy. Plenum Press: New York.CrossRefGoogle Scholar
Champbell, I. D., Dobson, C. M., Williams, R. J. P. & Xavier, A. V. (1973). Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum. Journal of Magnetic Resonance 11, 172181.Google Scholar
Cohen, R. M., Semple, W. E., Gross, M., Nordahl, T. E., King, A. C., Pickar, D. & Post, R. M. (1989). Evidence for common alterations in cerebral glucose metabolism in major affective disorders and schizophrenia. Neuropsychopharmacology 2, 241254.CrossRefGoogle ScholarPubMed
Delvenne, V., Delecluse, F., Hubain, P., Schoutens, A., De Maertelaer, V. & Mendelewics, J. (1990). Regional cerebral blood flow in patients with affective disorders. British Journal of Psychiatry 157, 359365.CrossRefGoogle ScholarPubMed
Erecinska, M. & Silver, I. A. (1989). ATP and brain function. Journal of Cerebral Blood Flow and Metabolism 9, 219.CrossRefGoogle ScholarPubMed
George, M. S., Rosenstein, D., Rubinow, D. R., Kling, M. A. & Post, R. M. (1993). CSF magnesium in affective disorder: lack of correlation with clinical course of treatment. Psychiatry Research 51, 139146.CrossRefGoogle Scholar
Grafman, J., Vance, S. C., Weingartner, H., Salazar, A. M. & Amin, D. (1986). The effects of lateralized frontal lesions on mood regulation. Brain 109, 11271148.CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry 23, 5662.CrossRefGoogle ScholarPubMed
Jeste, D. V., Lohr, J. B. & Goodwin, F. K. (1988). Neuroanatomical studies of major affective disorders. A review and suggestions for future research. British Journal of Psychiatry 153, 444459.CrossRefGoogle Scholar
Kato, T., Shioiri, T., Takahashi, S. & Inubushi, T. (1991). Measurement of brain phosphoinositide metabolism in bipolar patients using in vivo 31P MRS. Journal of Affective Disorders 22, 185190.CrossRefGoogle Scholar
Kato, T., Takahashi, T., Shioiri, T. & Inubushi, T. (1992). Brain phosphorus metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. Journal of Affective Disorders 26, 223230.CrossRefGoogle ScholarPubMed
Kato, T., Takahashi, T., Shioiri, T. & Inubushi, T. (1993). Alterations in brain phosphorus metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. Journal of Affective Disorders 27, 5360.CrossRefGoogle Scholar
Kato, T., Takahashi, S., Shioiri, T., Murashita, J., Hamakawa, H. & Inubushi, T. (1994). Reduction of phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. Journal of Affective Disorders 31, 125133.CrossRefGoogle ScholarPubMed
Kato, T., Shioiri, T., Murashita, J., Hamakawa, H., Inubushi, T. & Takahashi, S. (1995). Lateralized abnormality of high energy phosphate and bi-lateral reduction of phosphomonoester measured by 31P-MRS of the frontal lobes in schizophrenia. Psychiatry Research: Neuroimaging (in the press).Google Scholar
Kishimoto, H., Takazu, O., Ohna, S., Yamaguchi, T., Fujita, H., Kuwahara, H., Ishii, T., Matsushita, M., Yokoi, S. & Iio, M. (1987). 11C-Glucose metabolism in manic and depressed patients. Psychiatry Research 22, 8188.CrossRefGoogle ScholarPubMed
Koslow, S. H., Stokes, P. E., Mendels, J., Ramsay, A. & Casper, R. (1982). Insulin tolerance test: human growth hormone response and insulin resistance in primary unipolar depressed, bipolar depressed and control subjects. Psychological Medicine 12, 4555.CrossRefGoogle ScholarPubMed
McMahon, F. J., Stine, O. C. & Simpson, S. G. (1993). Clinical evidence of mitochondrial transmission in bipolar disorder. (Abstract) Psychiatric Genetics 3, 162.Google Scholar
Migliorelli, R., Starkstein, S. E., Teson, A., de Quiros, G., Vazques, S., Leiguarda, R. & Robinson, R. G. (1993). SPECT findings in patients with primary mania. Journal of Neuropsychiatry and Clinical Neurosciences 5, 379383.Google ScholarPubMed
Perria, L., Rossadini, G. & Rossi, G. F. (1961). Determination of side of cerebral dominance with amobarbital. Archives of Neurology 4, 173181.CrossRefGoogle ScholarPubMed
Petterson, U., Fyro, B. & Sedvall, G. (1973). A new scale for the longitudinal rating of manic state. Acta Psychialrica Scandinavica 49, 248256.CrossRefGoogle Scholar
Robinson, R. G., Boston, J. D., Starkstein, S. E. & Price, T. R. (1988). Comparison of mania and depression after brain injury: Causal factors. American Journal of Psychiatry 145, 172178.Google ScholarPubMed
Rubin, E., Sackeim, H. A., Prohovnik, I., Moeller, J. R., Schnur, D. B. & Mukherajee, S. (1993). rCBF in unmedicated manic and depressed patients.Abstracts of American College of Neuropsychopharmacology 32nd Annual Meeting, 241.Google Scholar
Sauter, A. & Rudin, M. (1993). Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function. Journal of Biological Chemistry 268, 1316613171.CrossRefGoogle ScholarPubMed
Silfverskiold, P. & Risberg, J. (1989). Regional cerebral blood flow in depression and mania. Archives of General Psychiatry 46, 253259.CrossRefGoogle ScholarPubMed
Starkstein, S. E. & Robinson, R. G. (1989). Affective disorders and cerebral vascular disease. British Journal of Psychiatry 154, 170182.CrossRefGoogle ScholarPubMed
Stine, O. C., Luu, S. U., Zito, M. & Casanova, M. (1993). The possible association between affective disorder and partially deleted mitochondria DNA. Biological Psychiatry 33, 141142.CrossRefGoogle Scholar
Suhara, T., Nakayama, K., Inoue, O., Fukuda, H., Shimizu, M., Mori, A. & Tateno, Y. (1992). D1, dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology 106, 1418.CrossRefGoogle ScholarPubMed
Stuss, D. T., Gow, C. A. & Hetherington, C. R. (1992). ‘No longer Gage’: Frontal lobe dysfunction and emotional changes. Journal of Consulting and Clinical Psychology 60, 349359.CrossRefGoogle ScholarPubMed
Williamson, P., Drost, D., Stanley, J., Carr, T., Morrison, S. & Merskey, H. (1991). Localized phosphorus 31 magnetic resonance spectroscopy in chronic schizophrenic patients and normal controls. Archives of General Psychiatry 48, 578.Google ScholarPubMed