Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T03:56:29.693Z Has data issue: false hasContentIssue false

Genetic analysis of activity, brain and behavioral associations in extended families with heavy genetic loading for bipolar disorder

Published online by Cambridge University Press:  09 December 2019

Annabel Vreeker
Affiliation:
Department of Genetics, UMC Utrecht, Utrecht University, Utrecht, The Netherlands Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
Scott C. Fears
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
Susan K. Service
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
Lucia Pagani
Affiliation:
Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA Dobeco Spa a Socia Unico, Milano, Italy
Joseph S. Takahashi
Affiliation:
Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
Carmen Araya
Affiliation:
Cell and Molecular Biology Research Center, Universidad de Costa Rica, San José, Costa Rica
Xinia Araya
Affiliation:
Cell and Molecular Biology Research Center, Universidad de Costa Rica, San José, Costa Rica
Julio Bejarano
Affiliation:
Cell and Molecular Biology Research Center, Universidad de Costa Rica, San José, Costa Rica
Maria C. Lopez
Affiliation:
Departamento de Psiquiatría Facultad de Medicina, Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Universidad de Antioquia, Medellín, Colombia
Gabriel Montoya
Affiliation:
Departamento de Psiquiatría Facultad de Medicina, Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Universidad de Antioquia, Medellín, Colombia
Claudia Patricia Montoya
Affiliation:
Departamento de Psiquiatría Facultad de Medicina, Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Universidad de Antioquia, Medellín, Colombia
Terri M. Teshiba
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
Javier Escobar
Affiliation:
Department of Psychiatry and Family Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
Rita M. Cantor
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
Carlos López-Jaramillo
Affiliation:
Departamento de Psiquiatría Facultad de Medicina, Grupo de Investigación en Psiquiatría (Research Group in Psychiatry; GIPSI), Universidad de Antioquia, Medellín, Colombia Mood Disorders Program, Hospital Universitario San Vicente Fundacion, Medellín, Colombia
Gabriel Macaya
Affiliation:
Cell and Molecular Biology Research Center, Universidad de Costa Rica, San José, Costa Rica
Julio Molina
Affiliation:
BioCiencias Lab, Guatemala City, Guatemala
Victor I. Reus
Affiliation:
Department of Psychiatry, University of California, San Francisco, CA, USA
Chiara Sabatti
Affiliation:
Department of Health Research and Policy, Division of Biostatistics, Stanford University, Stanford, CA, USA
Roel A. Ophoff
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
Nelson B. Freimer
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA
Carrie E. Bearden*
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University California Los Angeles, Los Angeles, CA, USA Department of Psychology, University California Los Angeles, Los Angeles, CA, USA
*
Author for correspondence: Carrie E. Bearden, E-mail: [email protected]

Abstract

Background

Disturbed sleep and activity are prominent features of bipolar disorder type I (BP-I). However, the relationship of sleep and activity characteristics to brain structure and behavior in euthymic BP-I patients and their non-BP-I relatives is unknown. Additionally, underlying genetic relationships between these traits have not been investigated.

Methods

Relationships between sleep and activity phenotypes, assessed using actigraphy, with structural neuroimaging (brain) and cognitive and temperament (behavior) phenotypes were investigated in 558 euthymic individuals from multi-generational pedigrees including at least one member with BP-I. Genetic correlations between actigraphy-brain and actigraphy-behavior associations were assessed, and bivariate linkage analysis was conducted for trait pairs with evidence of shared genetic influences.

Results

More physical activity and longer awake time were significantly associated with increased brain volumes and cortical thickness, better performance on neurocognitive measures of long-term memory and executive function, and less extreme scores on measures of temperament (impulsivity, cyclothymia). These associations did not differ between BP-I patients and their non-BP-I relatives. For nine activity-brain or activity-behavior pairs there was evidence for shared genetic influence (genetic correlations); of these pairs, a suggestive bivariate quantitative trait locus on chromosome 7 for wake duration and verbal working memory was identified.

Conclusions

Our findings indicate that increased physical activity and more adequate sleep are associated with increased brain size, better cognitive function and more stable temperament in BP-I patients and their non-BP-I relatives. Additionally, we found evidence for pleiotropy of several actigraphy-behavior and actigraphy-brain phenotypes, suggesting a shared genetic basis for these traits.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, M., Djurovic, S., Ueland, T., Mørch, R. H., Fjæra Laskemoen, J., Reponen, E. J., … Andreassen, O. A. (2019). The relationship between physical activity, clinical and cognitive characteristics and BDNF mRNA levels in patients with severe mental disorders. The World Journal of Biological Psychiatry, 20, 567576.CrossRefGoogle ScholarPubMed
Abramovic, L., Boks, M. P., Vreeker, A., Bouter, D. C., Kruiper, C., Verkooijen, S., … van Haren, N. E. (2016). The association of antipsychotic medication and lithium with brain measures in patients with bipolar disorder. European Neuropsychopharmacology, 26, 17411751.CrossRefGoogle ScholarPubMed
Abramovitch, A., Goldzweig, G., & Schweiger, A. (2013). Correlates of physical activity with intrusive thoughts, worry and impulsivity in adults with attention deficit/hyperactivity disorder: a cross-sectional pilot study. The Israel Journal of Psychiatry and Related Sciences, 50, 4754.Google ScholarPubMed
Acebo, C., & LeBourgeois, M. K. (2006). Actigraphy. Respiratory Care Clinics of North America, 12, 2330, viii.Google ScholarPubMed
Akiskal, H. S., & Akiskal, K. K. (2005). TEMPS: Temperament Evaluation of Memphis, Pisa, Paris and San Diego. Journal of Affective Disorders, 85, 12.CrossRefGoogle ScholarPubMed
Alhola, P., & Polo-Kantola, P. (2007). Sleep deprivation: impact on cognitive performance. Neuropsychiatric Disease and Treatment, 3, 553.Google ScholarPubMed
Almasy, L., & Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. The American Journal of Human Genetics, 62, 11981211.CrossRefGoogle ScholarPubMed
American Psychiatric Association, A. P. A., Force, D.S.M.T. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association.CrossRefGoogle Scholar
Anderson, C., & Platten, C. R. (2011). Sleep deprivation lowers inhibition and enhances impulsivity to negative stimuli. Behavioural Brain Research, 217, 463466.CrossRefGoogle ScholarPubMed
Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England), 21, 263265.CrossRefGoogle ScholarPubMed
Barron, F., & Welsh, G. S. (1952). Artistic perception as a possible factor in personality style: its measurement by a figure preference test. The Journal of Psychology, 33, 199203.CrossRefGoogle Scholar
Bearden, C. E., Hoffman, K. M., & Cannon, T. D. (2001). The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disorders, 3, 106150.CrossRefGoogle ScholarPubMed
Beebe, L. H., Tian, L., Morris, N., Goodwin, A., Allen, S. S., & Kuldau, J. (2005). Effects of exercise on mental and physical health parameters of persons with schizophrenia. Issues in Mental Health Nursing, 26, 661676.CrossRefGoogle ScholarPubMed
Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research, 2013, 657508.Google ScholarPubMed
Bugg, J. M., & Head, D. (2011). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, 32, 506514.CrossRefGoogle ScholarPubMed
Buss, A. H., & Perry, M. (1992). The aggression questionnaire. Journal of Personality and Social Psychology, 63, 452459.CrossRefGoogle ScholarPubMed
Carvajal-Carmona, L. G., Ophoff, R., Service, S., Hartiala, J., Molina, J., Leon, P., … Ruiz-Linares, A. (2003). Genetic demography of Antioquia (Colombia) and the Central Valley of Costa Rica. Human Genetics, 112, 534541.CrossRefGoogle ScholarPubMed
Cretu, J. B., Culver, J. L., Goffin, K. C., Shah, S., & Ketter, T. A. (2016). Sleep, residual mood symptoms, and time to relapse in recovered patients with bipolar disorder. Journal of Affective Disorders, 190, 162166.CrossRefGoogle ScholarPubMed
De Crescenzo, F., Economou, A., Sharpley, A. L., Gormez, A., & Quested, D. J. (2017). Actigraphic features of bipolar disorder: a systematic review and meta-analysis. Sleep Medicine Reviews, 33, 5869.CrossRefGoogle ScholarPubMed
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11, 114.CrossRefGoogle ScholarPubMed
Durmer, J. S., & Dinges, D. F. (2005). Neurocognitive consequences of sleep deprivation. In Roos, K. L. & Avidan, A. Y. (Eds.), Seminars in neurology (pp. 117129). New York, NY 10001, USA: Thieme Medical Publishers, Inc. Copyright© 2005.Google Scholar
Erickson, K. I., Hillman, C. H., & Kramer, A. F. (2015). Physical activity, brain, and cognition. Current Opinion in Behavioral Sciences, 4, 2732.CrossRefGoogle Scholar
Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35, S20S28.CrossRefGoogle ScholarPubMed
Fears, S. C., Schür, R., Sjouwerman, R., Service, S. K., Araya, C., Araya, X., … Bearden, C. E. (2015). Brain structure–function associations in multi-generational families genetically enriched for bipolar disorder. Brain, 138, 20872102.CrossRefGoogle ScholarPubMed
Fears, S. C., Service, S. K., Kremeyer, B., Araya, C., Araya, X., Bejarano, J., … Bearden, C. E. (2014). Multisystem component phenotypes of bipolar disorder for genetic investigations of extended pedigrees. JAMA Psychiatry, 71, 375387.CrossRefGoogle ScholarPubMed
Freimer, N. B., Reus, V. I., Escamilla, M., Spesny, M., Smith, L., Service, S., … Sandkuijl, L. A. (1996). An approach to investigating linkage for bipolar disorder using large Costa Rican pedigrees. American Journal of Medical Genetics, 67, 254263.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Glahn, D. C., Almasy, L., Barguil, M., Hare, E., Peralta, J. M., Kent, J. W. Jr., … Escamilla, M. A. (2010). Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. Archives of General Psychiatry, 67, 168177.CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology Neurosurgery & Psychiatry, 23, 5662.CrossRefGoogle ScholarPubMed
He, J. P., Paksarian, D., & Merikangas, K. R. (2018). Physical activity and mental disorder among adolescents in the United States. The Journal of Adolescent Health, 63, 628635.CrossRefGoogle ScholarPubMed
Heath, S. C. (1997). Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. American Journal of Human Genetics, 61, 748760.CrossRefGoogle ScholarPubMed
Heath, S. C., Snow, G. L., Thompson, E. A., Tseng, C., & Wijsman, E. M. (1997). MCMC segregation and linkage analysis. Genetic Epidemiology, 14, 10111016.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Herzberg, I., Jasinska, A., Garcia, J., Jawaheer, D., Service, S., Kremeyer, B., … Ruiz-Linares, A. (2006). Convergent linkage evidence from two Latin-American population isolates supports the presence of a susceptibility locus for bipolar disorder in 5q31-34. Human Molecular Genetics, 15, 31463153.CrossRefGoogle ScholarPubMed
Hibar, D., Westlye, L. T., van Erp, T. G., Rasmussen, J., Leonardo, C. D., Faskowitz, J., … Agartz, I. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21, 17101716.CrossRefGoogle ScholarPubMed
Hibar, D. P., Westlye, L. T., Doan, N. T., Jahanshad, N., Cheung, J. W., Ching, C. R. K., … Andreassen, O. A. (2018). Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Molecular Psychiatry, 23, 932942.CrossRefGoogle ScholarPubMed
Hong, K. S., McInnes, L. A., Service, S. K., Song, T., Lucas, J., Silva, S., … Freimer, N. B. (2004). Genetic mapping using haplotype and model-free linkage analysis supports previous evidence for a locus predisposing to severe bipolar disorder at 5q31-33. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 125b, 8386.CrossRefGoogle ScholarPubMed
Jackson, A., Cavanagh, J., & Scott, J. (2003). A systematic review of manic and depressive prodromes. Journal of Affective Disorders, 74, 209217.CrossRefGoogle ScholarPubMed
Kamphuis, J., Meerlo, P., Koolhaas, J. M., & Lancel, M. (2012). Poor sleep as a potential causal factor in aggression and violence. Sleep Medicine, 13, 327334.CrossRefGoogle ScholarPubMed
Kanady, J. C., Soehner, A. M., Klein, A. B., & Harvey, A. G. (2017). The association between insomnia-related sleep disruptions and cognitive dysfunction during the inter-episode phase of bipolar disorder. Journal of Psychiatric Research, 88, 8088.CrossRefGoogle ScholarPubMed
Kronholm, E., Sallinen, M., Suutama, T., Sulkava, R., Era, P., & Partonen, T. (2009). Self-reported sleep duration and cognitive functioning in the general population. Journal of Sleep Research, 18, 436446.CrossRefGoogle ScholarPubMed
Kyle, S. D., Sexton, C. E., Feige, B., Luik, A., Lane, J., Saxena, R. & Spiegelhalder, K. (2017). Sleep and cognitive performance: cross-sectional associations from the UK Biobank. Sleep Medicine, 38, 8591.CrossRefGoogle ScholarPubMed
Lane, J. M., Liang, J., Vlasac, I., Anderson, S. G., Bechtold, D. A., Bowden, J. & Saxena, R. (2017). Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nature Genetics, 49, 274281.CrossRefGoogle ScholarPubMed
Lunsford-Avery, J. R., Orr, J. M., Gupta, T., Pelletier-Baldelli, A., Dean, D. J., Smith Watts, A. K. & Mittal, V. A. (2013). Sleep dysfunction and thalamic abnormalities in adolescents at ultra high-risk for psychosis. Schizophrenia Research, 151, 148153.CrossRefGoogle ScholarPubMed
Merikangas, K. R., Swendsen, J., Hickie, I. B., Cui, L., Shou, H., Merikangas, A. K. & Zipunnikov, V. (2018). Real-time mobile monitoring of the dynamic associations among motor activity, energy, mood, and sleep in adults with bipolar disorder. JAMA Psychiatry, 76(2), 190198.CrossRefGoogle Scholar
Milhiet, V., Etain, B., Boudebesse, C., & Bellivier, F. (2011). Circadian biomarkers, circadian genes and bipolar disorders. Journal of Physiology-Paris, 105, 183189.CrossRefGoogle ScholarPubMed
Najt, P., Perez, J., Sanches, M., Peluso, M. A. M., Glahn, D., & Soares, J. C. (2007). Impulsivity and bipolar disorder. European Neuropsychopharmacology, 17, 313320.CrossRefGoogle ScholarPubMed
Nurnberger, J. I. Jr., Blehar, M. C., Kaufmann, C. A., York-Cooler, C., Simpson, S. G., Harkavy-Friedman, J., … Reich, T. (1994). Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH genetics initiative. Archives of General Psychiatry, 51, 849859; discussion 863–4.CrossRefGoogle ScholarPubMed
Pagani, L. St. Clair, P. A., Teshiba, T. M., Service, S. K., Fears, S. C., Araya, C., … Freimer, N. B. (2016). Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. Proceedings of the National Academy of Sciences, 113, E754E761.CrossRefGoogle ScholarPubMed
Palacio, C. A., Garcia, J., Arbelaez, M. P., Sanchez, R., Aguirre, B., Garces, I. C., … Ospina, J. (2004). Validation of the Diagnostic Interview for Genetic Studies (DIGS) in Colombia. Biomedica: Revista del Instituto Nacional de Salud, 24, 5662.CrossRefGoogle Scholar
Paluska, S. A., & Schwenk, T. L. (2000). Physical activity and mental health. Sports Medicine, 29, 167180.CrossRefGoogle ScholarPubMed
Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768774.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Peters, E., Joseph, S., Day, S., Garety, P. (2004). Measuring delusional ideation: the 21-item Peters et al. Delusions Inventory (PDI). Schizophrenia Bulletin, 30, 10051022.CrossRefGoogle Scholar
Rimol, L. M., Hartberg, C. B., Nesvag, R., Fennema-Notestine, C., Hagler, D. J. Jr., Pung, C. J., … Agartz, I. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 68, 4150.CrossRefGoogle ScholarPubMed
Russo, M., Mahon, K., Shanahan, M., Ramjas, E., Solon, C., Purcell, S. M. & Burdick, K. E. (2015). The relationship between sleep quality and neurocognition in bipolar disorder. Journal of Affective Disorders, 187, 156162.CrossRefGoogle ScholarPubMed
Service, S., DeYoung, J., Karayiorgou, M., Roos, J. L., Pretorious, H., Bedoya, G., … Freimer, N. (2006). Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nature Genetics, 38, 556560.CrossRefGoogle ScholarPubMed
Sexton, C. E., Storsve, A. B., Walhovd, K. B., Johansen-Berg, H., & Fjell, A. M. (2014). Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. Neurology, 83, 967973.CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl. 20), 2233; quiz 34–57.Google ScholarPubMed
Spira, A. P., Gonzalez, C. E., Venkatraman, V. K., Wu, M. N., Pacheco, J., Simonsick, E. M., … Resnick, S. M. (2016). Sleep duration and subsequent cortical thinning in cognitively normal older adults. Sleep, 39, 11211128.CrossRefGoogle ScholarPubMed
Srivastava, S., Childers, M. E., Baek, J. H., Strong, C. M., Hill, S. J., Warsett, K. S., … Ketter, T. A. (2010). Toward interaction of affective and cognitive contributors to creativity in bipolar disorders: a controlled study. Journal of Affective Disorders, 125, 2734.CrossRefGoogle ScholarPubMed
Stephens, T. (1988). Physical activity and mental health in the United States and Canada: evidence from four population surveys. Preventive Medicine, 17, 3547.CrossRefGoogle ScholarPubMed
Stoffers, D., Moens, S., Benjamins, J., van Tol, M.-J., Penninx, B. W. J. H., Veltman, D. J., … Van Someren, E. J. W. (2012). Orbitofrontal gray matter relates to early morning awakening: a neural correlate of insomnia complaints? Frontiers in Neurology, 3, 105.CrossRefGoogle ScholarPubMed
Van der Waerden, B. L. (1952). Order tests for the two-sample problem and their power. Indagationes Mathematicae, 14, 458.Google Scholar
Verkooijen, S., Stevelink, R., Abramovic, L., Vinkers, C. H., Ophoff, R. A., Kahn, R. S., … van Haren, N. E. (2017). The association of sleep and physical activity with integrity of white matter microstructure in bipolar disorder patients and healthy controls. Psychiatry Research, 262, 7180.CrossRefGoogle ScholarPubMed
Volkert, J., Kopf, J., Kazmaier, J., Glaser, F., Zierhut, K. C., Schiele, M. A., … Reif, A. (2015). Evidence for cognitive subgroups in bipolar disorder and the influence of subclinical depression and sleep disturbances. European Neuropsychopharmacology, 25, 192202.CrossRefGoogle ScholarPubMed
Vreeker, A., Boks, M., Abramovic, L., Verkooijen, S., Van Bergen, A., Hillegers, M., … GROUP investigators. (2016). High educational performance is a distinctive feature of bipolar disorder: a study on cognition in bipolar disorder, schizophrenia patients, relatives and controls. Psychological Medicine, 46, 807818.CrossRefGoogle Scholar
Weinstein, A. M., Voss, M. W., Prakash, R. S., Chaddock, L., Szabo, A., White, S. M., … Erickson, K. I. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain, Behavior, and Immunity, 26, 811819.CrossRefGoogle ScholarPubMed
Xu, L., Jiang, C. Q., Lam, T. H., Liu, B., Jin, Y. L., Zhu, T., … Thomas, G. N. (2011). Short or long sleep duration is associated with memory impairment in older Chinese: the Guangzhou Biobank Cohort Study. Sleep, 34, 575580.CrossRefGoogle ScholarPubMed
Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: reliability, validity and sensitivity. British Journal of Psychiatry, 133, 429435.CrossRefGoogle ScholarPubMed
Zhou, X., & Stephens, M. (2014). Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nature Methods, 11, 407409.CrossRefGoogle ScholarPubMed
Supplementary material: File

Vreeker et al. supplementary material

Vreeker et al. supplementary material

Download Vreeker et al. supplementary material(File)
File 218.9 KB