Article contents
Diminished modulation of preparatory sensorimotor mu rhythm predicts attention-deficit/hyperactivity disorder severity
Published online by Cambridge University Press: 14 March 2017
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is characterized by problems in regulating attention and in suppressing disruptive motor activity, i.e. hyperactivity and impulsivity. We recently found evidence that aberrant distribution of posterior α band oscillations (8–12 Hz) is associated with attentional problems in ADHD. The sensorimotor cortex also produces strong 8–12 Hz band oscillations, namely the μ rhythm, and is thought to have a similar inhibitory function. Here, we now investigate whether problems in distributing α band oscillations in ADHD generalize to the μ rhythm in the sensorimotor domain.
In a group of adult ADHD (n = 17) and healthy control subjects (n = 18; aged 21–40 years) oscillatory brain activity was recorded using magnetoencephalography during a visuo-spatial attention task. Subjects had to anticipate a target with unpredictable timing and respond by pressing a button.
Preparing a motor response, the ADHD group failed to increase hemispheric μ lateralization with relatively higher μ power in sensorimotor regions not engaged in the task, as the controls did (F1,33 = 8.70, p = 0.006). Moreover, the ADHD group pre-response μ lateralization not only correlated positively with accuracy (rs = 0.64, p = 0.0052) and negatively with intra-individual reaction time variability (rs = −0.52, p = 0.033), but it also correlated negatively with the score on an ADHD rating scale (rs = −0.53, p = 0.028).
We suggest that ADHD is associated with an inability to sufficiently inhibit task-irrelevant sensorimotor areas by means of modulating μ oscillatory activity. This could explain disruptive motor activity in ADHD. These results provide further evidence that impaired modulation of α band oscillations is involved in the pathogenesis of ADHD.
Keywords
- Type
- Original Articles
- Information
- Copyright
- Copyright © Cambridge University Press 2017
References
- 15
- Cited by