Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T12:21:06.376Z Has data issue: false hasContentIssue false

Changes in a proposed new neuroendocrine marker of oestrogen receptor function in postpartum women

Published online by Cambridge University Press:  09 July 2009

J. A. Bearn*
Affiliation:
Department of Psychiatry, Institute of Psychiatry; Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research; Medical Unit, Westminster Hospital, London
K. M. Fairhall
Affiliation:
Department of Psychiatry, Institute of Psychiatry; Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research; Medical Unit, Westminster Hospital, London
I. C. A. F. Robinson
Affiliation:
Department of Psychiatry, Institute of Psychiatry; Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research; Medical Unit, Westminster Hospital, London
S. L. Lightman
Affiliation:
Department of Psychiatry, Institute of Psychiatry; Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research; Medical Unit, Westminster Hospital, London
S. A. Checkley
Affiliation:
Department of Psychiatry, Institute of Psychiatry; Division of Neurophysiology and Neuropharmacology, National Institute for Medical Research; Medical Unit, Westminster Hospital, London
*
1Address for correspondence: Dr J. A. Beam, Department of Psychiatry, Institute of Psychiatry, De Crespigny Park, London SE5 8AF.

Synopsis

We describe a novel neuroendocrine test which reflects a central response to activation of oestrogen receptors. This is achieved by measurement of plasma levels of oestrogen-stimulated neurophysin (ESN) following an oestrogen challenge. In normal women the ESN response to ethinyl oestradiol is dose-dependent. This response is attenuated in normal women during the first postpartum month, although it is unchanged in patients with anorexia nervosa, in spite of their similar concurrent hypo-estrogenic state. The altered puerperal response may result from the acute oestrogen withdrawal which occurs at delivery. The time course of the altered ESN response coincides with the period of maximum risk for puerperal psychosis. The ESN response to oestrogen provides a novel neuroendocrine measure to test the relevance of changes in central oestrogen receptor responsiveness in the pathogenesis of puerperal psychosis.

Type
Orginal Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

American Psychiatric Association (1980). Diagnostic and Statistical Manual of Mental Disorders, 3rd edn.American Psychiatric Association: Washington, DC.Google Scholar
Amico, J. A., Seif, S. M. & Robinson, A. G. (1981). Oxytocin in human plasma: correlation with neurophysin and stimulation with oestrogen. Journal of Clinical Endocrinology and Metabolism 52, 988993.CrossRefGoogle Scholar
Back, D. J., Breckenridge, A. M., Crawford, F. E., McIver, M., Orme, M. L. E., Rowe, P. H. & Watts, M. J. (1979). An investigation of the pharmacokinetics of ethinylestradiol in women using radioimmunoassay. Contraception 20, 263273.CrossRefGoogle ScholarPubMed
Campbell, J. L. & Winokur, G. (1982). Postpartum affective disorders: selected biological aspects. In Motherhood and Mental Illness (ed. Brockington, I. F. and Kumar, R.), pp. 2039. Academic Press: London.Google Scholar
Chambers, J. S., Fulli-Lemaire, I. & Cowen, P. J. (1985). Effects of the contraceptive pill on sedative responses to clonidine and apomorphine in normal women. Psychological Medicine 15, 363367.Google Scholar
Clopton, J. & Gordon, J. H. (1986). In vivo effects of oestrogen and 2-hydroxyestradiol on D2 dopamine receptor agonist affinity states in rat striatum. Journal of Neural Transmission 66, 1320.CrossRefGoogle ScholarPubMed
Deakin, J. F. W. (1988). Relevance of hormone-CNS interactions to psychological changes in the puerperium. In Motherhood and Mental Illness 2: Causes and Consequences (ed. Kumar, R. and Brockington, I. F.), pp. 113132. Wright: London.Google Scholar
Dyas, J., Turkes, A., Read, G. F. & Riad-Fahmy, D. (1981). A radioimmunoassay for ethinyl oestradiol in plasma incorporating an immunosorbent, pre-assay purification procedure. Annals of Clinical Biochemistry 18, 3741.CrossRefGoogle ScholarPubMed
Jost, J. P., Gleiser, M. & Seldran, M. (1985). Specific modulation of the transcription of cloned avian vitellogenin II gene by estradiol–receptor complex in vitro. Proceedings of the National Academy of Science USA 82, 988991.CrossRefGoogle ScholarPubMed
Kendell, R. E., Chalmers, J. C. & Platz, C. (1987). Epidemiology of puerperal psychoses. British Journal of Psychiatry 150, 662673.CrossRefGoogle ScholarPubMed
Koch, M. & Ehret, G. (1989). Immunocylochemical localisation and quantitation of oestrogen-binding cells in the male and female (virgin, pregnant, lactating) mouse brain. Brain Research 489, 101112.CrossRefGoogle Scholar
McEwan, B. S., Biegon, A., Davis, P. G., Krey, L. C., Luine, V. N., McGinnis, M. Y., Paden, C. M., Parsons, B. & Rainbow, T. C. (1982). Steroid hormones: humoral signals which alter brain cell properties and functions. Recent Progress in Hormone Research 34, 4192.Google Scholar
McEwan, B. S. (1988). Genomic regulation of sexual behaviour. Journal of Steroid Biochemistry 30, 179183.CrossRefGoogle Scholar
McHugh, R. E., Martin, S. L., Shirley, A., Butt, W. R., Lynch, S. S., Glass, M. R. & Martin, R. H. (1981). Oestrogen stimulated neurophysin in pregnancy and lactation. Clinical Endocrinology 15, 193198.CrossRefGoogle ScholarPubMed
Protheroe, C. (1969). Puerperal psychoses: a long term study 1927–1961. British Journal of Psychiatry 115, 930.CrossRefGoogle ScholarPubMed
Newburger, J. & Goldzieher, J. W. (1985). Pharmacokinetics of ethinyl estradiol: a current view Contraception 32, 3344.CrossRefGoogle ScholarPubMed
Pullan, P. T., Clappison, B. H. & Johnston, C. I. (1979). Plasma vasopressin and human neurophysins in physiological and pathological states associated with changes in vasopressin secretion. Journal of Clinical Endocrinology and Metabolism 49, 580587.CrossRefGoogle ScholarPubMed
Renner, K. J., Allen, D. L. & Luine, V. N. (1986). Monoamine levels and turnover in brain; relationship to priming action of oestrogen. Brain Research Bulletin 16, 469475.CrossRefGoogle Scholar
Robinson, I. C. A. F. (1986). The magnocellular and parvocellular OT and AVP systems. In Neuroendocrinology (ed. Lightman, S. L. and Everitt, B. J.), pp. 154176. Blackwell: Oxford.Google Scholar
Sar, M. & Stumpf, W. E. (1980). Simultaneous localisation of 3-Hestradiol and neurophysin I or arginine vasopressin in hypothalamic neurons demonstrated by a combined technique of dry-mount autoradiography and immunohistochemistry. Neuroscience Letters 17, 179184.CrossRefGoogle ScholarPubMed
Whalley, L. J., Roberts, D. F., Wentzel, J. & Wright, A. F. (1982 a). Genetic factors in puerperal affective psychoses. Ada Psychiatrica Scandinavia 65, 180193.CrossRefGoogle ScholarPubMed
Whalley, L. J., Robinson, I. C. A. F. & Fink, G. (1982 b). Oxytocin and neurophysin in postpartum mania. Lancet ii, 387388.CrossRefGoogle Scholar
Williams, T. D. M., Edwards, A., Fairhall, K. M., Robinson, I. C. A. F., McGarnick, G. M. & Lightman, S. L. (1985). Influence of endogenous and exogenous oestrogens on posterior pituitary secretion in women. Clinical Endocrinology 22, 589596.CrossRefGoogle ScholarPubMed