Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T08:39:33.211Z Has data issue: false hasContentIssue false

Cerebral hemispheric asymmetry revisited: effects of handedness, gender and schizophrenia measured by radius of gyration in magnetic resonance images

Published online by Cambridge University Press:  09 July 2009

E. Bullmore*
Affiliation:
Departments of Neuroscience, Biostatistics and Computing, Psychological Medicine, Institute of Psychiatry; Department of Neuropsychiatry, Institute of Neurology, London
M. Brammer
Affiliation:
Departments of Neuroscience, Biostatistics and Computing, Psychological Medicine, Institute of Psychiatry; Department of Neuropsychiatry, Institute of Neurology, London
I. Harvey
Affiliation:
Departments of Neuroscience, Biostatistics and Computing, Psychological Medicine, Institute of Psychiatry; Department of Neuropsychiatry, Institute of Neurology, London
R. Murray
Affiliation:
Departments of Neuroscience, Biostatistics and Computing, Psychological Medicine, Institute of Psychiatry; Department of Neuropsychiatry, Institute of Neurology, London
M. Ron
Affiliation:
Departments of Neuroscience, Biostatistics and Computing, Psychological Medicine, Institute of Psychiatry; Department of Neuropsychiatry, Institute of Neurology, London
*
1Address for correspondence: Dr Edward Bullmore, Department of Neuroscience, Institute of Psychiatry, De Crespigny Park, London SE5 8AF.

Synopsis

Abnormal patterns of cerebral hemispheric asymmetry have been inconsistently reported in association with schizophrenia. Radius of gyration (Rg) is a measure of the mean dispersion of points in a radially organized structure about that structure's centre of gravity. We developed computerized methods for estimating Rg of the magnetic resonance image (MRI) boundary between cortex and subcortex, and applied these methods to measurement of cerebral hemispheric asymmetry in 37 schizophrenics (SZs) and 30 controls (CONs). In right-handed CONs, Rg of right brain boundaries was significantly greater than Rg of left brain boundaries; in left-handed CONs, Rg of left brain boundaries was significantly greater than Rg of right brain boundaries. In right-handed males (both SZ and CON), there were significant differences in Rg between hemispheres; whereas in females (both SZ and CON) there were no such differences. Right-handed male SZs (N = 26) were distinguished by reversal of the right-handed male CON pattern of interhemispheric difference in Rg, and by global reduction in Rg of right brain boundaries. There was no evidence for significant abnormality of Rg in right-handed female SZs (N = 7). These findings suggest an important interactive effect of gender and schizophrenia on lateralized cerebral structure.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association, Committee on Nomenclature and Statistics (1987). Diagnostic and Statistical Manual of Mental Disorders. Revised 3rd edition. American Psychiatric Association: Washington, DC.Google Scholar
Andreasen, N. C., Dennert, J. W., Olsen, S. A. & Damasio, A. R. (1982). Hemispheric asymmetries and schizophrenia. American Journal of Psychiatry 139, 427430.Google ScholarPubMed
Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology 61, 303321.CrossRefGoogle ScholarPubMed
Barta, P. E., Pearlson, G. D., Richards, S. S., Powers, R. E. & Tune, L. E. (1990). Reduced superior temporal gyrus volume in schizophrenia: relationship to hallucinations. American Journal of Psychiatry 147, 14571462.Google Scholar
Becker, R. A., Chambers, J. M. & Wilks, A. R. (1988). The New S Language: A programming environment for data analysis and graphics. Wadsworth & Brooks/Cole: Pacific Grove, California.Google Scholar
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoe, R., Johnstone, E. C. & Marsh, L. (1986). Post-mortem evidence of structural brain changes in schizophrenia. Archives of General Psychiatry 43, 3642.CrossRefGoogle Scholar
Carpenter, L. A. (1992). Data facilities. In Scientific Visualisation (ed. Brodlie, K. W., Carpenter, L. A., Earnshaw, R. A., Gallop, J. R., Humbold, R. J., Mumford, A. M., Osland, C. D. and Quarendon, P.), pp. 87112. Springer-Verlag: Berlin.CrossRefGoogle Scholar
Castle, D. J. & Murray, R. M. (1991). The neurodevelopmental basis of sex differences in schizophrenia. Psychological Medicine 21, 565575.CrossRefGoogle ScholarPubMed
Chambers, J. M. & Hastie, T. J. (1992). Statistical Models in S. Wadsworth & Brooks/Cole: Pacific Grove, California.Google Scholar
Chi, J. G., Dooling, E. C. & Gilles, F. H. (1977). Gyral development of the human brain. Annals of Neurology 1, 8693.CrossRefGoogle ScholarPubMed
Crow, T. J., Ball, J., Bloom, S. R., Brown, R., Bruton, C. J., Colter, N., Frith, C. D., Johnstone, E. C., Owens, D. G. C. & Roberts, G. W. (1989). Schizophrenia as an anomaly of development of cerebral asymmetry. A postmortem study and a proposal concerning the genetic basis of the disease. Archives of General Psychiatry 46, 11451150.CrossRefGoogle Scholar
Cutting, J. (1990). The Right Cerebral Hemisphere and Psychiatric Disorders. Oxford University Press: Oxford.Google Scholar
Flor-Henry, P. (1974). Psychosis, neurosis and epilepsy. Developmental and gender-related effects and their aetiological contribution. British Journal of Psychiatry 124, 144150.CrossRefGoogle ScholarPubMed
Flor-Henry, P. (1985). Schizophrenia: sex differences. Canadian Journal of Psychiatry 30, 319322.CrossRefGoogle ScholarPubMed
Geschwind, N. (1989). Historical introduction. In Cerebral Dominance: The Biological Foundations (ed. Geschwind, N. and Galaburda, A. M.), pp. 110. Harvard University Press: Cambridge, Massachusetts.Google Scholar
Geschwind, N. & Levitsky, W. (1968). Human brain: left–right asymmetries in temporal speech region. Science 161, 186187.CrossRefGoogle ScholarPubMed
Goldman, P. S. & Galkin, T. W. (1978). Prenatal removal of frontal association cortex in the rhesus monkey: anatomical and functional consequences in postnatal life. Brain Research 152, 451485.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. & Rakic, P. (1989). Experimental modification of gyral patterns. In Cerebral Dominance: The Biological Foundations (ed. Geschwind, N. and Galaburda, A. M.), pp. 179194. Harvard University Press: Cambridge, Massachusetts.Google Scholar
Goldstein, J. M. & Tsuang, M. T. (1990). Gender and schizophrenia: an introduction and synthesis of findings. Schizophrenia Bulletin 10, 179183.CrossRefGoogle Scholar
Gonzalez, R. C. & Woods, R. E. (1992). Digital Image Processing. Addison-Wesley: Reading, Massachusetts.Google Scholar
Harvey, I., Ron, M. A., du Boulay, G., Wicks, D., Lewis, S. W. & Murray, R. M. (1993). Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychological Medicine 23, 591604.CrossRefGoogle ScholarPubMed
Hynd, G. W. & Semrud-Clikeman, M. (1989). Dyslexia and brain morphology. Psychological Bulletin 106, 447482.CrossRefGoogle ScholarPubMed
Iager, A.-C., Jirch, D. G. & Wyatt, R. J. (1985). A negative symptom rating scale. Psychiatry Research 16, 2736.CrossRefGoogle ScholarPubMed
Jablensky, A., Cooper, J. E., Tomov, T., Schwarz, R., Biehl, H., Giel, R., Ibrahim, H. H., Isele, R., Krumm, B., Ozturk, O. M., Savasir, I., Schubart, C. & Wiersma, D. (1985). A Procedure and Schedule for Assessment of Disability in Patients with Severe Psychiatric Disorders. World Health Organization: Geneva.Google Scholar
Jernigan, T. L., Zatz, L. M., Moses, J. A. & Cardelino, J. P. (1982). Computed tomography in schizophrenics and normal volunteers: II. Cranial asymmetry. Archives of General Psychiatry 39, 771773.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Owens, D. G. C., Crow, T. J., Frith, C. D., Alexandropoulos, K., Bydder, G. M. & Colter, N. (1989). Temporal lobe structure as determined by nuclear magnetic resonance in schizophrenia and bipolar affective disorder. Journal of Neurology, Neurosurgery and Psychiatry 52, 736741.CrossRefGoogle ScholarPubMed
Kertesz, A., Polk, M., Black, S. E. & Howell, J. (1990). Sex, handedness, and the morphometry of cerebral asymmetries on magnetic resonance imaging. Brain Research 530, 4048.CrossRefGoogle ScholarPubMed
Lewis, S. (1992). Sex and schizophrenia: vive la difference. British Journal of Psychiatry 161, 445450.CrossRefGoogle ScholarPubMed
Luchins, D. J., Weinberger, D. R. & Wyatt, R. J. (1979). Schizophrenia: Evidence of a subgroup with reversed cerebral asymmetry. Archives of General Psychiatry 36, 13091311.CrossRefGoogle ScholarPubMed
Luchins, D. J., Weinberger, D. R. & Wyatt, R. J. (1982). Schizophrenia and cerebral asymmetry detected by computed tomography. American Journal of Psychiatry 139, 753757.Google ScholarPubMed
Luchins, D. J. (1983). Psychopathology and cerebral asymmetries detected by computed tomography. In Laterality and Psychopathology (ed. Flor-Henry, P. and Gruzelier, J.), pp. 625638. Elsevier: Amsterdam.Google Scholar
McConnell, S. K. (1988). Development and decision making in the mammalian cerebral cortex. Brain Research Reviews 13, 123.CrossRefGoogle Scholar
McGlone, J. (1980). Sex differences in human brain asymmetry: a critical survey. Behavioural and Brain Sciences 3, 215263.CrossRefGoogle Scholar
McGuire, P. K., Shah, G. M. S. & Murray, R. M. (1993). Increased blood flow in Broca's area during auditory hallucinations in schizophrenia. Lancet 342, 703706.CrossRefGoogle ScholarPubMed
Markow, T. A. (1992). Genetics and developmental stability: an integrative conjecture on aetiology and neurobiology of schizophrenia. Psychological Medicine 22, 295305.CrossRefGoogle ScholarPubMed
Naeser, M. A., Levine, H. L., Benson, D. F., Stuss, D. T. & Weir, W. S. (1981). Frontal leukotomy size and hemispheric asymmetries on computerised tomographic scans of schizophrenics with variable recovery. Archives of Neurology 38, 3037.CrossRefGoogle ScholarPubMed
Nyback, H., Wiesel, F. A., Berggren, B. M. & Hindmarsh, T. (1982). Computed tomography of the brain in patients with acute psychosis and in healthy volunteers. Acta Psychiatrica Scandinavica 65, 403414.CrossRefGoogle ScholarPubMed
Pakkenberg, B. (1987). Post-mortem study of chronic schizophrenic brains. British Journal of Psychiatry 151, 744752.CrossRefGoogle ScholarPubMed
Rakic, P. (1974). Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425427.CrossRefGoogle ScholarPubMed
Robb, R. A. & Barillot, C. (1989). Interactive display and analysis of 3-D medical images. IEEE Transactions on Medical Imaging 8, 217226.CrossRefGoogle ScholarPubMed
Rossi, A., Stratta, P., D'Albenzio, L., Tartaro, A., Schiazza, G., Di Michele, V., Bolino, F. & Casacchia, M. (1990). Reduced temporal lobe area in schizophrenia. Biological Psychiatry 27, 6168.CrossRefGoogle ScholarPubMed
Spitzer, R. L., Endicott, J. & Robins, E. (1978). Research Diagnostic Criteria (RDC) for a Selected Group of Functional Psychoses, 3rd edn.Biometrics Research Division, New York State Psychiatric Institute: New York.Google Scholar
Stratta, P., Rossi, A., Galluci, M., Amicarelli, I., Passariello, R. & Cassacchia, M. (1989). Hemispheric asymmetries and schizophrenia: a preliminary magnetic resonance imaging study. Biological Psychiatry 25, 275284.CrossRefGoogle ScholarPubMed
Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F. & Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. New England Journal of Medicine 322, 789794.CrossRefGoogle ScholarPubMed
Tsai, L. Y., Nasrallah, H. A. & Jacoby, C. G. (1983). Hemispheric asymmetries on computed tomographic scans in schizophrenia and mania. A controlled study and a critical review. Archives of General Psychiatry 40, 12861289.CrossRefGoogle Scholar
Tsuang, M. T. (1993). Genotypes, phenotypes, and the brain. A search for connections in schizophrenia. British Journal of Psychiatry 163, 299307.CrossRefGoogle Scholar
Vicsek, T. (1989). Fractal Growth Phenomena. World Scientific: Singapore.CrossRefGoogle Scholar
Waddington, J. L. (1993 a). Schizophrenia: developmental neuroscience and pathobiology. Lancet 341, 531536.CrossRefGoogle ScholarPubMed
Waddington, J. L. (1993 b). Neurodynamics of abnormalities in cerebral metabolism and structure in schizophrenia. Schizophrenia Bulletin 19, 5568.CrossRefGoogle ScholarPubMed
Weinberger, D. R., Luchins, D. J., Morihisa, J. M. & Wyatt, R. J. (1982). Asymmetric volumes of the right and left frontal and occipital regions of the human brain. Annals of Neurology 11, 97100.CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.CrossRefGoogle ScholarPubMed
Witelson, S. (1991). Sexual differentiation of the human temporo-parietal region for functional asymmetry. Psychoneuroendocrinology 16, 131153.CrossRefGoogle ScholarPubMed
Zipursky, R. B., Lim, K. O., Sullivan, E. V., Brown, B. W. & Pfefferbaum, A. (1992). Widespread cerebral grey matter volume deficits in schizophrenia. Archives of General Psychiatry 49, 195205.CrossRefGoogle ScholarPubMed