Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T01:00:22.123Z Has data issue: false hasContentIssue false

Biochemical changes in the cholinergic system of the ageing brain and in senile dementia1

Published online by Cambridge University Press:  09 July 2009

D. M. Bowen
Affiliation:
Department of Neurochemistry, Institute of Neurology, London
A. N. Davison*
Affiliation:
Department of Neurochemistry, Institute of Neurology, London
*
2Address for correspondence: Professor A. N. Davison, Department of Neurochemistry, Institute of Neurology, Queen Square, London WC1N 3BG.

Synopsis

Loss of neurons from the ageing human brain is accompanied by reduction in biochemical markers. Compared with age-matched controls about one third of nerve cell components are lost from the temporal lobe of patients with senile dementia of Alzheimer's type. There is marked loss of choline acetyltransferase activity, especially in the hippocampus. This alteration parallels the intensity of neuropathological damage and relates to prior mental impairment. Smaller changes in other neurotransmitter synthesizing enzymes are generally found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This paper was presented at the Sixth Bel Air Symposium, Evian, September 1979.

References

Ball, M. (1977). Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. Acta neuropathologica 37, 111118.CrossRefGoogle ScholarPubMed
Bowen, D. M., White, P., Flack, R. J. A., Smith, C. B. & Davison, A. N. (1974). Brain-decarboxylase activities as indices of pathological change in senile dementia. Lancet i, 12471249.CrossRefGoogle Scholar
Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. (1976). Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99, 459496.CrossRefGoogle ScholarPubMed
Bowen, D. M., White, P., Spillane, J. A., Goodhardt, M. J., Curzon, G., Iwangoff, P., Meier-Ruge, W. & Davison, A. N. (1979). Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet i, 1114.Google Scholar
Brody, H. (1955). Organization of the cerebral cortex. Journal of Comparative Neurology 102, 511556.CrossRefGoogle ScholarPubMed
Buell, S. J. & Coleman, P. D. (1979). Dendritic growth in human brain and failure of growth in senile dementia. Science 206, 854855.CrossRefGoogle ScholarPubMed
Cohen, E. L. & Wurtman, R. J. (1975). Brain acetylcholine; increase after systematic choline administration. Life Sciences 16, 10951102.CrossRefGoogle Scholar
Colon, E. J. (1973). The cerebral cortex in presenile dementia. Acta neuropathologica 23, 281290.CrossRefGoogle ScholarPubMed
Corsellis, J. A. N. (1976). Ageing and the dementias. In Greenfield's Neuropathology (ed. Blackwood, W. and Corsellis, J. A. N.), pp. 796848. Edward Arnold: London.Google Scholar
Davies, P. & Maloney, A. J. F. (1976). Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet ii, 1403.CrossRefGoogle Scholar
Davies, P. & Verth, A. H. (1978). Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimertype dementia brains. Brain Research 138, 385392.CrossRefGoogle Scholar
de Boni, V. & Crapper, D. R. (1978). Paired helical filaments of the Alzheimer type in cultured neurones. Nature 271, 566568.CrossRefGoogle ScholarPubMed
de Kaban, A. S. & Sadowsky, D. (1978). Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Annals of Neurology 4, 345356.CrossRefGoogle Scholar
Deutsch, J. (1971). The cholinergic synapse and the site of memory. Science 174, 788794.CrossRefGoogle ScholarPubMed
Flentge, F. & van den Berg, C. J. (1979). Choline administration and acetylcholine in brain. Journal of Neurochemistry 32, 13311333.CrossRefGoogle ScholarPubMed
Geinisman, Y., Bondareff, W. & Telser, A. (1977). Transport of 3H-fucose labelled glycoproteins in the septo-hippocampal pathway of young adult and senescent rats. Brain Research 125, 182186.CrossRefGoogle ScholarPubMed
Gottfries, C. G., Gottfries, I. & Roos, B. E. (1969). The investigations of homovanillic acid in the human brain and its correlation to senile dementia. British Journal of Psychiatry 115, 563574.CrossRefGoogle ScholarPubMed
Hirsch, M. J., Growden, J. H. & Wurtman, R. J. (1977). Increase in hippocampal acetylcholine after choline administration. Brain Research 125, 383385.CrossRefGoogle ScholarPubMed
Ishii, T. & Haga, S. (1976). Immuno-electron microscopic localisation of immunoglobulins in amyloid fibrils of senile plaques. Acta neuropathologica (Berlin) 36, 243250.CrossRefGoogle ScholarPubMed
Konigsmark, B. W. & Murphy, E. A. (1970). Neuronal populations in the human brain. Nature 228, 13351336.CrossRefGoogle ScholarPubMed
Kuhar, M. J. & Murrin, L. C. (1978). Sodium-dependent high affinity choline uptake. Journal of Neurochemistry 30, 1521.CrossRefGoogle ScholarPubMed
McDermott, J. R., Fraser, H. & Dickinson, A. G. (1978). Reduced choline-acetyltransferase activity in scrapie mouse brain. Lancet ii, 318319.CrossRefGoogle Scholar
Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H. & Tomlinson, B. E. (1977 a). Neurotransmitter enzyme abnormalities in senile dementia. Journal of Neurological Science 34, 247265.CrossRefGoogle ScholarPubMed
Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. (1977 b). Necropsy evidence of central cholinergic deficits in senile dementia. Lancet i, 189.CrossRefGoogle Scholar
Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, P. H. & Perry, R. H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. British Medical Journal ii, 14571459.CrossRefGoogle Scholar
Reisine, T. D., Yamamura, H. I., Bird, E. D., Stokes, E. & Enna, S. J. (1978). Pre- and postsynaptic neurochemical alterations in Alzheimer's disease. Brain Research 159, 477481.CrossRefGoogle ScholarPubMed
Scheibel, M. S. & Scheibel, A. B. (1975). Structural changes in the aging brain. In Aging Clinics, Morphological and Neurochemical Aspects in the Aging Central Nervous System volume 1 (ed. Brody, H., Harman, D. and Ordy, J. M.), pp. 1137. Raven Press: New York.Google Scholar
Tomlinson, B. E. (1977). Morphological changes and dementia in old age. In Aging and Dementia (ed. Smith, W. L. and Kinbourne, M.), pp. 2556. Spectrum: New York.Google Scholar
Winblad, B., Adolfsson, R., Gottfries, C. G., Oreland, L. & Roos, B. E. (1978). Brain monoamines, monoamine metabolites and enzymes in physiological ageing and senile dementia. In Recent Developments in Mass Spectrometry in Biochemistry and Medicine (ed. Trigesio, A.), pp. 253267. Plenum: New York.CrossRefGoogle Scholar