Published online by Cambridge University Press: 09 July 2009
There is evidence that changes in the concentrations of the monoamine neurotransmitters within the brain are associated with changes in mental processes, with disorders of control of movement and with certain neuropsychiatric diseases. These neurotransmitters are synthesized in the brain from aromatic amino acid precursors that have to be obtained from the circulating blood. In this study some factors which alter the rates of entry of four amino acids (the important neurotransmitter precursors L-tyrosine and L-tryptophan, as well as L-phenylalanine and L-histidine) into the brain have been studied and the findings considered in relation to conditions in which the quantities of one or more of the monoamine neurotransmitters formed within the cerebral cells may be either too large or too small. Thus too little neurotransmitter will be formed if competition between amino acids for the carriers transporting them into the cerebral cells causes the exclusion of a large proportion of any of the aromatic amino acid precursors from the brain. For example, L-tryptophan is partially excluded from the brain if a raised level of any one of several other amino acids is maintained in the circulation. Of these, L-phenylalanine inhibits the transport of L-tryptophan into the brain most effectively, while aromatic amino acids in general exclude L-tryptophan more effectively than do other neutral amino acids.
Over-production of one or more of the monoamine neurotransmitters is likely to occur when there is too much of one of the aromatic amino acid precursors in the brain cells as a result of abnormally high uptake from the blood, or as a result of their release by an excessive breakdown of the protein within these cells. Underproduction of neurotransmitters may occur in certain disease states, such as some aminoacidurias or Parkinsonism. We have listed some conditions associated with altered mental states or motor disability in which over- or under-production of monoamine neurotransmitters may occur and have tried to relate the findings in human disease with our experimental results.