Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T01:04:36.728Z Has data issue: false hasContentIssue false

Advances in genetic findings on attention deficit hyperactivity disorder

Published online by Cambridge University Press:  17 May 2007

ANITA THAPAR*
Affiliation:
Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
KATE LANGLEY
Affiliation:
Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
MICHAEL J. OWEN
Affiliation:
Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
MICHAEL C. O'DONOVAN
Affiliation:
Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
*
*Address for correspondence: Professor Anita Thapar, Department of Psychological Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK. (Email: [email protected])

Abstract

Attention deficit hyperactivity disorder (ADHD) is a common, childhood-onset neurodevelopmental disorder with adverse consequences during adult life. Family, twin and adoption studies show that genetic factors contribute to the aetiology of ADHD and that environmental factors also play a role. Family and twin studies have shown the importance of genetic influences on continuity in ADHD over time and in accounting for the co-occurrence of ADHD and conduct disorder problems. In meta-analyses of molecular genetic studies, the 48-bp variable number tandem repeat (VNTR) variant in the dopamine D4 gene and the CA(n) microsatellite marker in the D5 receptor gene have been found to be repeatedly associated with ADHD. Results from meta-analyses of the 480-bp VNTR in the dopamine transporter gene are mixed. Several genetic studies have also identified genetic variants that are related to specific clinical and developmental features of ADHD. In the next few years, a new generation of much larger-scale genetic studies should lead to the identification of further ADHD susceptibility genes. Such studies will also need to be integrated with other areas of neuroscience, clinical and epidemiological research to investigate how specific gene variants exert risk effects, interact with environmental factors and enable identification of the underlying causal mechanisms that lead to ADHD.

Type
Invited Review
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alberts-Corush, J., Firestone, P. & Goodman, J. T. (1986). Attention and impulsivity characteristics of the biological and adoptive parents of hyperactive and normal control children. American Journal of Orthopsychiatry 56, 413423.CrossRefGoogle ScholarPubMed
Arcos-Burgos, M., Castellanos, F. X., Pineda, D., Lopera, F., Palacio, J. D., Palacio, L. G., Rapoport, J. L., Berg, K., Bailey-Wilson, J. E. & Muenke, M. (2004). Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. American Journal of Human Genetics 75, 9981014.CrossRefGoogle Scholar
Bakker, S. C., van der Meulen, E. M., Buitelaar, J. K., Sandkuijl, L. A., Pauls, D. L., Monsuur, A. J., van't Slot, R., Minderaa, R. B., Gunning, W. B., Pearson, P. L. & Sinke, R. J. (2003). A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: suggestive evidence for linkage on chromosomes 7p and 15q. American Journal of Human Genetics 72, 12511260.CrossRefGoogle ScholarPubMed
Banerjee, E., Sinha, S., Chatterjee, A., Gangopadhyay, P. K., Singh, M. & Nandagopal, K. (2006). A family-based study of Indian subjects from Kolkata reveals allelic association of the serotonin transporter intron-2 (STin2) polymorphism and attention-deficit-hyperactivity disorder (ADHD). American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 141, 361366.CrossRefGoogle Scholar
Barkley, R. A. (1998). Attention Deficit Hyperactivity Disorder. Guilford Press: New York.Google ScholarPubMed
Barkley, R. A., Smith, K. M., Fischer, M. & Navia, B. (2006). An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7+, DBH TaqI A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 141, 487498.CrossRefGoogle Scholar
Barr, C. L., Feng, Y., Wigg, K., Bloom, S., Roberts, W., Malone, M., Schachar, R., Tannock, R. & Kennedy, J. L. (2000). Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Molecular Psychiatry 5, 405409.CrossRefGoogle ScholarPubMed
Beitchman, J. H., Davidge, K. M., Kennedy, J. L., Atkinson, L., Lee, V., Shapiro, S. & Douglas, L. (2003). The serotonin transporter gene in aggressive children with and without ADHD and nonaggressive matched controls. Annals of the New York Academy of Sciences 1008, 248251.CrossRefGoogle ScholarPubMed
Bellgrove, M. A., Hawi, Z., Lowe, N., Kirley, A., Robertson, I. H. & Gill, M. (2005). DRD4 gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): effects of associated alleles at the VNTR and –521 SNP. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 136, 8186.CrossRefGoogle Scholar
Biederman, J., Faraone, S. V., Keenan, K., Benjamin, J., Krifcher, B., Moore, C., Sprich-Buckminster, S., Ugaglia, K., Jellinek, M. S. & Steingard, R. (1992). Further evidence for family-genetic risk factors in attention deficit hyperactivity disorder. Patterns of comorbidity in probands and relatives psychiatrically and pediatrically referred samples. Archives of General Psychiatry 49, 728738.CrossRefGoogle ScholarPubMed
Biederman, J., Faraone, S. V., Keenan, K. & Tsuang, M. T. (1991). Evidence of familial association between attention deficit disorder and major affective disorders. Archives of General Psychiatry 48, 633642.CrossRefGoogle ScholarPubMed
Brookes, K., Mill, J., Guindalini, C., Curran, S., Xu, X., Knight, J., Chen, C. K., Huang, Y. S., Sentha, V., Taylor, E., Chen, W., Breen, G. & Asherson, P. (2006). A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Archives of General Psychiatry 63, 7481.CrossRefGoogle ScholarPubMed
Brophy, K., Hawi, Z., Kirley, A., Fitzgerald, M. & Gill, M. (2002). Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Molecular Psychiatry 7, 913917.CrossRefGoogle ScholarPubMed
Cantwell, D. P. (1975). Genetics of hyperactivity. Journal of Child Psychology and Psychiatry 16, 261264.CrossRefGoogle ScholarPubMed
Caspi, A., Langley, K., Craig, I., Milne, B., Moffitt, T. E., O'Donovan, M., Owen, M. J., Polo Tomas, M., Poulton, R., Rutter, M., Taylor, A., Williams, B. & Thapar, A. (in press). A replicated molecular basis for subtyping antisocial behavior in ADHD. Archives of General Psychiatry.Google Scholar
Castellanos, F. (2001). Neuroimaging Studies of ADHD. Oxford University Press: Oxford.Google Scholar
Castellanos, F. X. & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Reviews Neuroscience 3, 617628.CrossRefGoogle ScholarPubMed
Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., Kolachana, B. S., Hyde, T. M., Herman, M. M., Apud, J., Egan, M. F., Kleinman, J. E. & Weinberger, D. R. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics 75, 807821.CrossRefGoogle ScholarPubMed
Cheuk, D. K. & Wong, V. (2006). Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. Behavior Genetics 36, 651659.CrossRefGoogle ScholarPubMed
Cunningham, L., Cadoret, R. J., Loftus, R. & Edwards, J. E. (1975). Studies of adoptees from psychiatrically disturbed biological parents: psychiatric conditions in childhood and adolescence. British Journal of Psychiatry 126, 534549.CrossRefGoogle ScholarPubMed
Curran, S., Purcell, S., Craig, I., Asherson, P. & Sham, P. (2005). The serotonin transporter gene as a QTL for ADHD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 134, 4247.CrossRefGoogle Scholar
D'Souza, U. M. & Craig, I. W. (2006). Functional polymorphisms in dopamine and serotonin pathway genes. Human Mutation 27, 113.CrossRefGoogle ScholarPubMed
Diamond, A., Briand, L., Fossella, J. & Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. American Journal of Psychiatry 161, 125132.CrossRefGoogle ScholarPubMed
Dougherty, D. D., Bonab, A. A., Spencer, T. J., Rauch, S. L., Madras, B. K. & Fischman, A. J. (1999). Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354, 21322133.CrossRefGoogle ScholarPubMed
Doyle, A. E., Willcutt, E. G., Seidman, L. J., Biederman, J., Chouinard, V. A., Silva, J. & Faraone, S. V. (2005). Attention-deficit/hyperactivity disorder endophenotypes. Biological Psychiatry 57, 13241335.CrossRefGoogle ScholarPubMed
Dresel, S., Krause, J., Krause, K. H., LaFougere, C., Brinkbaumer, K., Kung, H. F., Hahn, K. & Tatsch, K. (2000). Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. European Journal of Nuclear Medicine 27, 15181524.CrossRefGoogle Scholar
Durston, S., Fossella, J. A., Casey, B. J., Hulshoff Pol, H. E., Galvan, A., Schnack, H. G., Steenhuis, M. P., Minderaa, R. B., Buitelaar, J. K., Kahn, R. S. & van Engeland, H. (2005). Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Molecular Psychiatry 10, 678685.CrossRefGoogle Scholar
El-Faddagh, M., Laucht, M., Maras, A., Vohringer, L. & Schmidt, M. H. (2004). Association of dopamine D4 receptor (DRD4) gene with attention-deficit/hyperactivity disorder (ADHD) in a high-risk community sample: a longitudinal study from birth to 11 years of age. Journal of Neural Transmission 111, 883889.CrossRefGoogle Scholar
Faraone, S. V., Biederman, J., Keenan, K. & Tsuang, M. T. (1991). A family-genetic study of girls with DSM-III attention deficit disorder. American Journal of Psychiatry 148, 112117.Google ScholarPubMed
Faraone, S. V., Biederman, J. & Monuteaux, M. C. (2000). Toward guidelines for pedigree selection in genetic studies of attention deficit hyperactivity disorder. Genetic Epidemiology 18, 116.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Faraone, S. V., Doyle, A. E., Mick, E. & Biederman, J. (2001). Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. American Journal of Psychiatry 158, 10521057.CrossRefGoogle ScholarPubMed
Faraone, S. V., Perlis, R. H., Doyle, A. E., Smoller, J. W., Goralnick, J. J., Holmgren, M. A. & Sklar, P. (2005). Molecular genetics of attention-deficit/hyperactivity disorder. Biological Psychiatry 57, 13131323.CrossRefGoogle ScholarPubMed
Faraone, S. V., Sergeant, J., Gillberg, C. & Biederman, J. (2003). The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2, 104113.Google ScholarPubMed
Faraone, S. V., Spencer, T. J., Montano, C. B. & Biederman, J. (2004). Attention-deficit/hyperactivity disorder in adults: a survey of current practice in psychiatry and primary care. Archives of Internal Medicine 164, 12211226.CrossRefGoogle ScholarPubMed
Fisher, S. E., Francks, C., McCracken, J. T., McGough, J. J., Marlow, A. J., MacPhie, I. L., Newbury, D. F., Crawford, L. R., Palmer, C. G., Woodward, J. A., Del'Homme, M., Cantwell, D. P., Nelson, S. F., Monaco, A. P. & Smalley, S. L. (2002). A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. American Journal of Human Genetics 70, 11831196.CrossRefGoogle ScholarPubMed
Goodman, R. & Stevenson, J. (1989). A twin study of hyperactivity – II. The aetiological role of genes, family relationships and perinatal adversity. Journal of Child Psychology and Psychiatry 30, 691709.CrossRefGoogle ScholarPubMed
Greenberg, B. D., Tolliver, T. J., Huang, S. J., Li, Q., Bengel, D. & Murphy, D. L. (1999). Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 88, 8387.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Heiser, P., Dempfle, A., Friedel, S., Konrad, K., Hinney, A., Kiefl, H., Walitza, S., Bettecken, T., Saar, K., Linder, M., Warnke, A., Herpertz-Dahlmann, B., Schafer, H., Remschmidt, H. & Hebebrand, J. (2006). Family-based association study of serotonergic candidate genes and attention-deficit/hyperactivity disorder in a German sample. Journal of Neural Transmission 114, 513521.CrossRefGoogle Scholar
Hess, E. J., Collins, K. A. & Wilson, M. C. (1996). Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. Journal of Neuroscience 16, 31043111.CrossRefGoogle ScholarPubMed
Hudziak, J. J., Heath, A. C., Madden, P. F., Reich, W., Bucholz, K. K., Slutske, W., Bierut, L. J., Neuman, R. J. & Todd, R. D. (1998). Latent class and factor analysis of DSM-IV ADHD: a twin study of female adolescents. Journal of the American Academy of Child and Adolescent Psychiatry 37, 848857.CrossRefGoogle ScholarPubMed
Joober, R. & Sengupta, S. (2006). Parent-of-origin effect and risk for attention-deficit/hyperactivity disorder: balancing the evidence against bias and chance findings. American Journal of Human Genetics 79, 765766.CrossRefGoogle ScholarPubMed
Jucaite, A., Fernell, E., Halldin, C., Forssberg, H. & Farde, L. (2005). Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biological Psychiatry 57, 229238.CrossRefGoogle ScholarPubMed
Kahn, R. S., Khoury, J., Nichols, W. C. & Lanphear, B. P. (2003). Role of dopamine transporter genotype and maternal prenatal smoking in childhood hyperactive-impulsive, inattentive, and oppositional behaviors. Journal of Pediatrics 143, 104110.CrossRefGoogle ScholarPubMed
Kent, L., Doerry, U., Hardy, E., Parmar, R., Gingell, K., Hawi, Z., Kirley, A., Lowe, N., Fitzgerald, M., Gill, M. & Craddock, N. (2002). Evidence that variation at the serotonin transporter gene influences susceptibility to attention deficit hyperactivity disorder (ADHD): analysis and pooled analysis. Molecular Psychiatry 7, 908912.CrossRefGoogle ScholarPubMed
Kessler, R. C., Adler, L., Barkley, R., Biederman, J., Conners, C. K., Demler, O., Faraone, S. V., Greenhill, L. L., Howes, M. J., Secnik, K., Spencer, T., Ustun, T. B., Walters, E. E. & Zaslavsky, A. M. (2006). The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. American Journal of Psychiatry 163, 716723.CrossRefGoogle ScholarPubMed
Kim, S. J., Badner, J., Cheon, K. A., Kim, B. N., Yoo, H. J., Kim, S. J., Cook, Jr., , E., Leventhal, B. L. & Kim, Y. S. (2005). Family-based association study of the serotonin transporter gene polymorphisms in Korean ADHD trios. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 139, 1418.CrossRefGoogle Scholar
Kuntsi, J., Rijsdijk, F., Ronald, A., Asherson, P. & Plomin, R. (2005). Genetic influences on the stability of attention-deficit/hyperactivity disorder symptoms from early to middle childhood. Biological Psychiatry 57, 647654.CrossRefGoogle ScholarPubMed
Kustanovich, V., Merriman, B., McGough, J., McCracken, J. T., Smalley, S. L. & Nelson, S. F. (2003). Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Molecular Psychiatry 8, 309315.CrossRefGoogle ScholarPubMed
Langley, K., Fowler, T., Owen, M., O'Donovan, M. C. & Thapar, A. (2006). Genetic predictors of ADHD continuity – a longitudinal study. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 141B.Google Scholar
Langley, K., Marshall, L., van den Bree, M., Thomas, H., Owen, M., O'Donovan, M. C. & Thapar, A. (2004). Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. American Journal of Psychiatry 161, 133138.CrossRefGoogle ScholarPubMed
Langley, K., Payton, A., Hamshere, M. L., Pay, H. M., Lawson, D. C., Turic, D., Ollier, W., Worthington, J., Owen, M. J., O'Donovan, M. C. & Thapar, A. (2003). No evidence of association of two 5HT transporter gene polymorphisms and attention deficit hyperactivity disorder. Psychiatric Genetics 13, 107110.CrossRefGoogle ScholarPubMed
Langley, K., Turic, D., Rice, F., Holmans, P., Van den Bree, M., Craddock, N., Kent, L., Owen, M., O'Donovan, M. C. & Thapar, A. (in press). Testing for gene–environment interaction effects in attention deficit hyperactivity disorder and associated antisocial behavior. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics.Google Scholar
Larsson, H., Lichtenstein, P. & Larsson, J. O. (2006). Genetic contributions to the development of ADHD subtypes from childhood to adolescence. Journal of the American Academy of Child and Adolescent Psychiatry 45, 973981.CrossRefGoogle Scholar
Larsson, J. O., Larsson, H. & Lichtenstein, P. (2004). Genetic and environmental contributions to stability and change of ADHD symptoms between 8 and 13 years of age: a longitudinal twin study. Journal of the American Academy of Child and Adolescent Psychiatry 43, 12671275.CrossRefGoogle ScholarPubMed
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H. & Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 15271531.CrossRefGoogle ScholarPubMed
Li, D., Sham, P. C., Owen, M. J. & He, L. (2006). Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics 15, 22762284.CrossRefGoogle ScholarPubMed
Lowe, N., Kirley, A., Hawi, Z., Sham, P., Wickham, H., Kratochvil, C. J., Smith, S. D., Lee, S. Y., Levy, F., Kent, L., Middle, F., Rohde, L. A., Roman, T., Tahir, E., Yazgan, Y., Asherson, P., Mill, J., Thapar, A., Payton, A., Todd, R. D., Stephens, T., Ebstein, R. P., Manor, I., Barr, C. L., Wigg, K. G., Sinke, R. J., Buitelaar, J. K., Smalley, S. L., Nelson, S. F., Biederman, J., Faraone, S. V. & Gill, M. (2004). Joint analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly inattentive and combined subtypes. American Journal of Human Genetics 74, 348356.CrossRefGoogle Scholar
Maher, B. S., Marazita, M. L., Ferrell, R. E. & Vanyukov, M. M. (2002). Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatric Genetics 12, 207215.CrossRefGoogle ScholarPubMed
Manor, I., Eisenberg, J., Tyano, S., Sever, Y., Cohen, H., Ebstein, R. P. & Kotler, M. (2001). Family-based association study of the serotonin transporter promoter region polymorphism (5-HTTLPR) in attention deficit hyperactivity disorder. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 105, 9195.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
McGough, J. J. (2005). Attention-deficit/hyperactivity disorder pharmacogenomics. Biological Psychiatry 57, 13671373.CrossRefGoogle ScholarPubMed
McMahon, R. C. (1980). Genetic etiology in the hyperactive child syndrome: a critical review. American Journal of Orthopsychiatry 50, 145150.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Kohn, P. D., Kolachana, B., Kippenhan, S., McInerney-Leo, A., Nussbaum, R., Weinberger, D. R. & Berman, K. F. (2005). Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nature Neuroscience 8, 594596.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A. & Weinberger, D. R. (2006). Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience 7, 818827.CrossRefGoogle ScholarPubMed
Mill, J., Caspi, A., Williams, B. S., Craig, I., Taylor, A., Polo-Tomas, M., Berridge, C. W., Poulton, R. & Moffitt, T. E. (2006). Prediction of heterogeneity in intelligence and adult prognosis by genetic polymorphisms in the dopamine system among children with attention-deficit/hyperactivity disorder: evidence from 2 birth cohorts. Archives of General Psychiatry 63, 462469.CrossRefGoogle ScholarPubMed
Mill, J., Curran, S., Kent, L., Gould, A., Huckett, L., Richards, S., Taylor, E. & Asherson, P. (2002). Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 114, 269271.CrossRefGoogle ScholarPubMed
Mill, J., Richards, S., Knight, J., Curran, S., Taylor, E. & Asherson, P. (2004). Haplotype analysis of SNAP-25 suggests a role in the aetiology of ADHD. Molecular Psychiatry 9, 801810.CrossRefGoogle ScholarPubMed
Mill, J., Xu, X., Ronald, A., Curran, S., Price, T., Knight, J., Craig, I., Sham, P., Plomin, R. & Asherson, P. (2005). Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 133, 6873.CrossRefGoogle Scholar
Moffitt, T. E., Caspi, A. & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry 62, 473481.CrossRefGoogle ScholarPubMed
Nadder, T. S., Rutter, M., Silberg, J. L., Maes, H. H. & Eaves, L. J. (2002). Genetic effects on the variation and covariation of attention deficit-hyperactivity disorder (ADHD) and oppositional-defiant disorder/conduct disorder (ODD/CD) symptomatologies across informant and occasion of measurement. Psychological Medicine 32, 3953.CrossRefGoogle ScholarPubMed
Neuman, R. J., Heath, A., Reich, W., Bucholz, K. K., Madden, P. A. F., Sun, L., Todd, R. D. & Hudziak, J. J. (2001). Latent class analysis of ADHD and comorbid symptoms in a population sample of adolescent female twins. Journal of Child Psychology and Psychiatry 42, 933942.CrossRefGoogle Scholar
Neuman, R. J., Lobos, E., Reich, W., Henderson, C. A., Sun, L. W. & Todd, R. D. (in press). Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biological Psychiatry.Google Scholar
Ogdie, M. N., Bakker, S. C., Fisher, S. E., Francks, C., Yang, M. H., Cantor, R. M., Loo, S. K., van der Meulen, E., Pearson, P., Buitelaar, J., Monaco, A., Nelson, S. F., Sinke, R. J. & Smalley, S. L. (2006). Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13. Molecular Psychiatry 11, 58.CrossRefGoogle Scholar
Ogdie, M. N., Fisher, S. E., Yang, M., Ishii, J., Francks, C., Loo, S. K., Cantor, R. M., McCracken, J. T., McGough, J. J., Smalley, S. L. & Nelson, S. F. (2004). Attention deficit hyperactivity disorder: fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. American Journal of Human Genetics 75, 661668.CrossRefGoogle ScholarPubMed
Ogdie, M. N., Macphie, I. L., Minassian, S. L., Yang, M., Fisher, S. E., Francks, C., Cantor, R. M., McCracken, J. T., McGough, J. J., Nelson, S. F., Monaco, A. P. & Smalley, S. L. (2003). A genomewide scan for attention-deficit/hyperactivity disorder in an extended sample: suggestive linkage on 17p11. American Journal of Human Genetics 72, 12681279.CrossRefGoogle Scholar
Price, T. S., Simonoff, E., Asherson, P., Curran, S., Kuntsi, J., Waldman, I. & Plomin, R. (2005). Continuity and change in preschool ADHD symptoms: longitudinal genetic analysis with contrast effects. Behavioral Genetics 35, 121132.CrossRefGoogle ScholarPubMed
Price, T. S., Simonoff, E., Waldman, I., Asherson, P. & Plomin, R. (2001). Hyperactivity in preschool children is highly heritable. Journal of the American Academy of Child and Adolescent Psychiatry 40, 13621364.CrossRefGoogle ScholarPubMed
Purper-Ouakil, D., Wohl, M., Mouren, M. C., Verpillat, P., Ades, J. & Gorwood, P. (2005). Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatric Genetics 15, 5359.CrossRefGoogle ScholarPubMed
Rasmussen, E. R., Neuman, R. J., Heath, A. C., Levy, F., Hay, D. A. & Todd, R. D. (2004). Familial clustering of latent class and DSM-IV defined attention-deficit/hyperactivity disorder (ADHD) subtypes. Journal of Child Psychology and Psychiatry 45, 589598.CrossRefGoogle ScholarPubMed
Retz, W., Thome, J., Blocher, D., Baader, M. & Rosler, M. (2002). Association of attention deficit hyperactivity disorder-related psychopathology and personality traits with the serotonin transporter promoter region polymorphism. Neuroscience Letters 319, 133136.CrossRefGoogle ScholarPubMed
Rietveld, M. J., Hudziak, J. J., Bartels, M., van Beijsterveldt, C. E. & Boomsma, D. I. (2004). Heritability of attention problems in children: longitudinal results from a study of twins, age 3 to 12. Journal of Child Psychology and Psychiatry 45, 577588.CrossRefGoogle ScholarPubMed
Rutter, M., Moffitt, T. E. & Caspi, A. (2006). Gene–environment interplay and psychopathology: multiple varieties but real effects. Journal of Child Psychology and Psychiatry 47, 226261.CrossRefGoogle ScholarPubMed
Seeger, G., Schloss, P. & Schmidt, M. H. (2001). Marker gene polymorphisms in hyperkinetic disorder – predictors of clinical response to treatment with methylphenidate? Neuroscience Letters 313, 4548.CrossRefGoogle ScholarPubMed
Seeger, G., Schloss, P., Schmidt, M. H., Ruter-Jungfleisch, A. & Henn, F. A. (2004). Gene–environment interaction in hyperkinetic conduct disorder (HD+CD) as indicated by season of birth variations in dopamine receptor (DRD4) gene polymorphism. Neuroscience Letters 366, 282286.CrossRefGoogle ScholarPubMed
Seidman, L. J., Valera, E. M. & Makris, N. (2005). Structural brain imaging of attention-deficit/hyperactivity disorder. Biological Psychiatry 57, 12631272.CrossRefGoogle ScholarPubMed
Sherman, D. K., McGue, M. K. & Iacono, W. G. (1997). Twin concordance for attention deficit hyperactivity disorder: a comparison of teachers’ and mothers' reports. American Journal of Psychiatry 154, 532535.Google ScholarPubMed
Silberg, J., Rutter, M., Meyer, J., Maes, H., Hewitt, J., Simonoff, E., Pickles, A., Loeber, R. & Eaves, L. (1996). Genetic and environmental influences on the covariation between hyperactivity and conduct disturbance in juvenile twins. Journal of Child Psychology and Psychiatry 37, 803816.CrossRefGoogle ScholarPubMed
Smalley, S. L., Kustanovich, V., Minassian, S. L., Stone, J. L., Ogdie, M. N., McGough, J. J., McCracken, J. T., MacPhie, I. L., Francks, C., Fisher, S. E., Cantor, R. M., Monaco, A. P. & Nelson, S. F. (2002). Genetic linkage of attention-deficit/hyperactivity disorder on chromosome 16p13, in a region implicated in autism. American Journal of Human Genetics 71, 959963.CrossRefGoogle Scholar
Smalley, S. L., McGough, J. J., Del'Homme, M., NewDelman, J., Gordon, E., Kim, T., Liu, A. & McCracken, J. T. (2000). Familial clustering of symptoms and disruptive behaviors in multiplex families with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry 39, 11351143.CrossRefGoogle ScholarPubMed
Spencer, T. J., Biederman, J., Madras, B. K., Faraone, S. V., Dougherty, D. D., Bonab, A. A. & Fischman, A. J. (2005). In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter. Biological Psychiatry 57, 12931300.CrossRefGoogle ScholarPubMed
Sprich, S., Biederman, J., Crawford, M. H., Mundy, E. & Faraone, S. V. (2000). Adoptive and biological families of children and adolescents with ADHD. Journal of the American Academy of Child and Adolescent Psychiatry 39, 14321437.CrossRefGoogle ScholarPubMed
Swanson, J., Oosterlaan, J., Murias, M., Schuck, S., Flodman, P., Spence, M. A., Wasdell, M., Ding, Y., Chi, H. C., Smith, M., Mann, M., Carlson, C., Kennedy, J. L., Sergeant, J. A., Leung, P., Zhang, Y. P., Sadeh, A., Chen, C., Whalen, C. K., Babb, K. A., Moyzis, R. & Posner, M. I. (2000). Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proceedings of the National Academy of Sciences USA 97, 47544759.CrossRefGoogle ScholarPubMed
Taylor, E., Sandberg, S., Thorley, G. & Giles, S. (1991). The Epidemiology of Childhood Hyperactivity. Oxford University Press: New York.Google Scholar
Thapar, A., Harrington, R. & McGuffin, P. (2001). Examining the comorbidity of ADHD-related behaviours and conduct problems using a twin study design. British Journal of Psychiatry 179, 224229.CrossRefGoogle ScholarPubMed
Thapar, A., Harrington, R., Ross, K. & McGuffin, P. (2000). Does the definition of ADHD affect heritability? Journal of the American Academy of Child and Adolescent Psychiatry 39, 15281536.CrossRefGoogle ScholarPubMed
Thapar, A., Holmes, J., Poulton, K. & Harrington, R. (1999). Genetic basis of attention deficit and hyperactivity. British Journal of Psychiatry 174, 105111.CrossRefGoogle ScholarPubMed
Thapar, A., Langley, K., Asherson, P. & Gill, M. (2007). Gene–environment interplay in attention-deficit hyperactivity disorder and the importance of a developmental perspective. British Journal of Psychiatry 190, 13.CrossRefGoogle ScholarPubMed
Thapar, A., Langley, K., Fowler, T., Rice, F., Turic, D., Whittinger, N., Aggleton, J., Van den Bree, M., Owen, M. & O'Donovan, M. (2005 a). Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry 62, 12751278.CrossRefGoogle ScholarPubMed
Thapar, A., Langley, K., O'Donovan, M. & Owen, M. (2006). Refining the attention deficit hyperactivity disorder phenotype for molecular genetic studies. Molecular Psychiatry 11, 714720.CrossRefGoogle ScholarPubMed
Thapar, A., O'Donovan, M. & Owen, M. J. (2005 b). The genetics of attention deficit hyperactivity disorder. Human Molecular Genetics 14 (Spec. No. 2), R275R282.CrossRefGoogle ScholarPubMed
Todd, R. D., Rasmussen, E. R., Neuman, R. J., Reich, W., Hudziak, J. J., Bucholz, K. K., Madden, P. A. & Heath, A. (2001). Familiality and heritability of subtypes of attention deficit hyperactivity disorder in a population sample of adolescent female twins. American Journal of Psychiatry 158, 18911898.CrossRefGoogle Scholar
Todd, R. D., Sitdhiraksa, N., Reich, W., Ji, T. H., Joyner, C. A., Heath, A. C. & Neuman, R. J. (2002). Discrimination of DSM-IV and latent class attention-deficit/hyperactivity disorder subtypes by educational and cognitive performance in a population-based sample of child and adolescent twins. Journal of the American Academy of Child and Adolescent Psychiatry 41, 820828.CrossRefGoogle Scholar
van Dyck, C. H., Quinlan, D. M., Cretella, L. M., Staley, J. K., Malison, R. T., Baldwin, R. M., Seibyl, J. P. & Innis, R. B. (2002). Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. American Journal of Psychiatry 159, 309312.CrossRefGoogle ScholarPubMed
Volkow, N. D. & Swanson, J. M. (2003). Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. American Journal of Psychiatry 160, 19091918.CrossRefGoogle ScholarPubMed
Washbourne, P., Thompson, P. M., Carta, M., Costa, E. T., Mathews, J. R., Lopez-Bendito, G., Molnar, Z., Becher, M. W., Valenzuela, C. F., Partridge, L. D. & Wilson, M. C. (2002). Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nature Neuroscience 5, 1926.CrossRefGoogle ScholarPubMed
Xu, X., Mill, J., Chen, C. K., Brookes, K., Taylor, E. & Asherson, P. (2005). Family-based association study of serotonin transporter gene polymorphisms in attention deficit hyperactivity disorder: no evidence for association in UK and Taiwanese samples. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 139, 1113.CrossRefGoogle Scholar
Zoroglu, S. S., Erdal, M. E., Alasehirli, B., Erdal, N., Sivasli, E., Tutkun, H., Savas, H. A. & Herken, H. (2002). Significance of serotonin transporter gene 5-HTTLPR and variable number of tandem repeat polymorphism in attention deficit hyperactivity disorder. Neuropsychobiology 45, 176181.CrossRefGoogle ScholarPubMed