Published online by Cambridge University Press: 18 March 2022
Behavioral features of binge eating disorder (BED) suggest abnormalities in reward and inhibitory control. Studies of adult populations suggest functional abnormalities in reward and inhibitory control networks. Despite behavioral markers often developing in children, the neurobiology of pediatric BED remains unstudied.
58 pre-adolescent children (aged 9–10-years) with BED (mBMI = 25.05; s.d. = 5.40) and 66 age, BMI and developmentally matched control children (mBMI = 25.78; s.d. = 0.33) were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development (ABCD) Study. We investigated group differences in resting-state functional MRI functional connectivity (FC) within and between reward and inhibitory control networks. A seed-based approach was employed to assess nodes in the reward [orbitofrontal cortex (OFC), nucleus accumbens, amygdala] and inhibitory control [dorsolateral prefrontal cortex, anterior cingulate cortex (ACC)] networks via hypothesis-driven seed-to-seed analyses, and secondary seed-to-voxel analyses.
Findings revealed reduced FC between the dlPFC and amygdala, and between the ACC and OFC in pre-adolescent children with BED, relative to controls. These findings indicating aberrant connectivity between nodes of inhibitory control and reward networks were corroborated by the whole-brain FC analyses.
Early-onset BED may be characterized by diffuse abnormalities in the functional synergy between reward and cognitive control networks, without perturbations within reward and inhibitory control networks, respectively. The decreased capacity to regulate a reward-driven pursuit of hedonic foods, which is characteristic of BED, may in part, rest on this dysconnectivity between reward and inhibitory control networks.