Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:24:04.146Z Has data issue: false hasContentIssue false

Psychomotor, subjective and neuroendocrine effects of acute tryptophan depletion in the healthy volunteer

Published online by Cambridge University Press:  28 April 2020

P Danjou
Affiliation:
Department of Clinical Pharmacology, Hôpital de la Salpêtrière, Division Ambroise-Paré, 47, bd de l'Hôpital, 75651Paris Cedex 13
M Hamon
Affiliation:
INSERM U 288, Faculté de Médecine Pitié-Salpêtrière, 91, bd de l'Hôpital, 75634Paris Cedex 13, France
L Lacomblez
Affiliation:
Department of Clinical Pharmacology, Hôpital de la Salpêtrière, Division Ambroise-Paré, 47, bd de l'Hôpital, 75651Paris Cedex 13
D Warot
Affiliation:
Department of Clinical Pharmacology, Hôpital de la Salpêtrière, Division Ambroise-Paré, 47, bd de l'Hôpital, 75651Paris Cedex 13
S Kecskemeti
Affiliation:
Department of Clinical Pharmacology, Hôpital de la Salpêtrière, Division Ambroise-Paré, 47, bd de l'Hôpital, 75651Paris Cedex 13
AJ Puech
Affiliation:
Department of Clinical Pharmacology, Hôpital de la Salpêtrière, Division Ambroise-Paré, 47, bd de l'Hôpital, 75651Paris Cedex 13
Get access

Summary

The effects of acute tryptophan depletion were investigated in 20 healthy volunteers. Ten of them received a balanced amino acid solution and 10 a tryptophan-free solution. The fall in tryptophan levels induced by the oral administration of a mixture tryptophan-free of L-amino acids was - 77% for free tryptophan and - 81% for total tryptophan. Before treatment, there were intergroup differences affecting alertness parameters (critical flicker threshold, recognition reaction time), plasma levels of prolactin and baseline performance in the proofreading correction test. In the tryptophan-depleted group, the number of errors reported during the unpleasant sound signal was increased (+ 48%) after treatment, whereas the number of errors fell (— 15%) in the group receiving the tryptophan supplement. Conversely the levels of prolactin were correlated with those of serum tryptophan. Few subjective effects were reported.

Résumé

Résumé

Les effets d'une déplétion aiguë en tryptophane ont été étudiés chez 20 volontaires sains. Les 10 premiers ont reçu une solution d'aminoacides en proportion équilibrée, et les 10 derniers ont reçu une solution sans tryptophane. La chute des taux de tryptophane, induite par l'administration orale d'un mélange de L-aminoacides ne contenant pas de tryptophane était de - 77% pour le tryptophane libre et de - 81% pour le tryptophane total. Avant traitement, il existait des différences intergroupes, portant sur des paramètres de vigilance (seuil critique de fusion, temps de réaction de choix), les niveaux plasmatiques de prolactine, ainsi que sur le niveau de performance basal du test de correction typographique. Dans le groupe déplété en tryptophane, le nombre d'erreurs pendant l'audition du stimulus dysphorique a augmenté (+ 48%) après traitement alors qu'il a diminué (— 15%) dans le groupe supplémenté. Inversement, les taux de prolactine étaient corrélés à ceux du tryptophane sérique. Peu d'effets subjectifs ont été notés.

Type
Original article
Copyright
Copyright © European Psychiatric Association 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Asberg, MTraskman, LThoren, P (1976) 5-HIAA in the cerebrospinal fluid: a biochemical suicide predictor? Arch Gen Psychiatry 33, 11931197CrossRefGoogle ScholarPubMed
Blundell, JE (1984) Serotonin and appetite. Neuropharmacology 23, 15371551CrossRefGoogle ScholarPubMed
BMDP Statistical Software Inc (1987) Los Angeles, CA Bourgouin, SFaivre-Bauman, ABenda, PGlowinski, JHamon, M (1974) Plasma tryptophan and 5-HT metabolism in the CNS of the newborn rat. J Neurochemistry 23, 319327CrossRefGoogle Scholar
Brown, GLGoodwin, FKBallenger, JCGoyer, PFMajor, LF (1979) Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychialry Res 1, 131139CrossRefGoogle ScholarPubMed
Charney, DSHeninger, GR (1986) Serotonin function in panic disorders. The effect of intraveinous tryptophan in healthy subjects and patients, with panic disorder before and during alprazolam treatment. Arch Gen Psychiatry 43, 10591065CrossRefGoogle Scholar
Charney, DSWoods, SWGoodman, WKHeninger, GR (1987) Serotonin function in anxiety. II. Effects of serotonin agonist MGPP in panic disorder patients and healthy subjects. Psychopharmacology 92, 1424CrossRefGoogle Scholar
Centre de Psychologie Appliquée (1975) Le Test de stress. Les Editions du Centre de Psychologie Appliquée, ParisGoogle Scholar
Danjou, PWarot, DPuech, AJ (1988) Effets de l'alprazolam sur la mémoire et le stress induit chez le volontaire sain. Thérapie 43, 9396Google Scholar
De Meirleir, KL'Hermite-Baleriaux, ML'Hermite, MRost, RHollmann, W (1985) Evidence for serotoninergic control of exercise-induced prolactin secretion. Horm Metab Res 17, 380381CrossRefGoogle ScholarPubMed
Denckla, WDDewey, HH (1967) The determination of tryptophan in plasma, liver and urine. J Lab Clin Med 69, 160169Google ScholarPubMed
Fernstrom, JDWurtman, RJ (1971) Brain serotonin content : physiological dependence on plasma tryptophan levels. Science 173, 149152CrossRefGoogle ScholarPubMed
Graeff, FGZuardi, AWGiglio, JSLima, Filho ECKarniol, IG (1985) Effects of metergoline on human anxiety. Psychopharmacology 86, 334338CrossRefGoogle ScholarPubMed
Green, ARAronson, JKCurzon, GWoods, HF (1980) Metabolism of an oral load. II : effects of pretreatment with the putative tryptophan pyrrolase inhibitors nicotinamide and allopurinol. Br J Clin Pharmacol 10, 611615CrossRefGoogle Scholar
Fernstrom, JDWurtman, RJ (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173, 149152CrossRefGoogle ScholarPubMed
Hindmarch, I (1980) Psychomotor function and psychoactive drugs. Br J Clin Pharmacol 10, 189209CrossRefGoogle ScholarPubMed
Huck, SWMc, Lean RA (1975) Using a repeated measures ANOVA to analyze the data from a pretest - post-test design : a potentially confusing task. Psychol Bull 82, 511518CrossRefGoogle Scholar
Kahn, RSAnis, GMWetzler, SVan, Praag HM (1988a) Neuroendocrine evidence for serotonin reception hypersensitivity in panic disorder. Psychopharmacology 96, 360364CrossRefGoogle Scholar
Kahn, RSWetzler, SVan, Praag HMAsnis, GMStrauman, T (1988b) Behavioural indications for serotonin reception hypersensitivity in panic disorder. Psychiatry Res 25, 101104CrossRefGoogle Scholar
Knott, PJCurzon, G (1972) Fee tryptophan in plasma and brain tryptophan metabolism. Nature 239, 452453CrossRefGoogle Scholar
Lecrubier, Y (1988) Sérotonine et capacité de différer une conduite : un modèle psychobiologique. Psychiatr & Psychobiol 3, 95100Google Scholar
Lieberman, HRCorkin, SSpring, BJGarfield, GSGrowdon, GHWurtlan, RJ (1984) Use of nutrients that are neurotransmitter precursors to modify behaviors. Psychopharmacol Bull 20, 595598Google Scholar
Lieberman, HRCorkin, SSpring, BJGrowdon, JHWurtman, RJ (1982) Mood, performance and pain sensitivity: changes induced by food constituents. Psychiatry Res 17, 135145CrossRefGoogle ScholarPubMed
Maes, MDe Ruyter, MHobin, PSuy, E (1986) The diagnostic performance of the L-tryptophan/competing amino acids ratio in major depression. Acta Psychiatr Belg 86, 257265Google ScholarPubMed
Mendels, JFrazer, A (1974) Brain biogenic amine depletion and mood. Arch Gen Psychiatry 30, 447451CrossRefGoogle Scholar
Moja, EAStoff, DMGessa, GLCostoldi, GAssereto, RTofanetti, O (1988) Decrease in plasma tryptophan after tryptophan-free amino acid mixtures in man. Life Sci 42, 15511556CrossRefGoogle ScholarPubMed
Moller, SE (1985) Tryptophan to competing aminoacids ratio in depressive disorders : relation to efficacy of antidepressive treatments. Acta Psychiatr Scand (suppl) 72, 630CrossRefGoogle Scholar
Moller, SEDe Beurs, PTimmerman, LTan, BKLeijnse-Ybema, HJCohen, Stuart MHHopfner, Petersen HE (1986) Plasma tryptophan and tyrosine ratios to competing amino acids in relation to antidepressant response to citalopram and maprotiline. Psychopharmacology 88, 96100CrossRefGoogle ScholarPubMed
Smith, SEPihl, ROYoung, SNErvin, FR (1986) Elevation and reduction of plasma tryptophan and their effects on aggression and perceptual sensitivity in normal males. Aggressive Behav 12, 3934073.0.CO;2-L>CrossRefGoogle Scholar
Smith, SEPihl, ROYoung, SNErvin, FR (1987) A test of possible cognitive and environmental influences on the mood-lowering effect of tryptophan depletion in normal males. Psychopharmacology 91, 451457CrossRefGoogle ScholarPubMed
Spring, B (1986) Effects of food and nutrients on the behavior of normal individuals. Nutr Brain 7, 147Google Scholar
Tagliamonte, ABiggio, GVargiu, LGessa, GL (1973) Free tryptophan in serum controls brain tryptophan level and serotonin synthesis. Life Sci 12, 277287CrossRefGoogle ScholarPubMed
Winokur, ALindberg, NDLucki, IPhillips, JAmsterdam, JD (1986) Behavioural effects associated with intraveinous L-tryptophan administration. Psychopharmacology 88, 213219CrossRefGoogle Scholar
Young, SNSmith, SEPihl, ROErvin, FR (1985) Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology 87, 173177CrossRefGoogle ScholarPubMed
Young, SN (1986a) The clinical psychopharmacology of tryptophan. Nutr Brain 9, 4988Google Scholar
Young, SN (1986b) The effect on aggression and mood of altering tryptophan levels. Nutr Rev (Suppl) 112122Google Scholar
Zuckerman, MLubin, BVogel, LValerius, E (1964) Measurement of experimentally-induced affects. J Consult Psychology 28, 418425CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.