Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T21:00:43.453Z Has data issue: false hasContentIssue false

What Numbers are Real?

Published online by Cambridge University Press:  28 February 2022

Kenneth L. Manders*
Affiliation:
University of Pittsburgh

Extract

Perhaps one of the chief items of pride of mathematical philosophy in the last century and a half is the insight that mathematics is the science of formal structures; as opposed to the traditional view, that ‘the proper and exclusive subject matter of mathematics is…quantity.’ Closely associated with this insight is the distinction between pure mathematics, the beneficiary of the freedom conferred by the new status, and applied mathematics (in the philosopher's rather than the mathematician's sense of the word), which has been sent into philosophical limbo, supposedly under the care of philosophy of empirical science.

These two insights allow us to avoid many embarrassments. Our postulated freedom to adore gods other than Quantity allows us to break the seemingly endless circle of pointless debate, whether or not negative and complex numbers are legitimate quantities; our assumption that mathematical truth is independent of physical truth relieves us of the worry, whether Euclidean or non-Euclidean geometries are legitimate.

Type
Part VII. Mathematics
Copyright
Copyright © 1987 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

I would like to thank H. Bos and W. Sieg for helpful conversations and for help on sources. I gratefully acknowledge financial support by NSF Grant SES 85-11229, and use of document production facilities at Carnegie-Mellon University. However, views expressed are exclusively the author's responsibility.

References

Alexander, H. G., editor. (1956) The Leibniz-Clarke Correspondence. Manchester: Manchester University Press, and New York: Barnes and Noble.Google Scholar
Arcavi, and Bruckheimer, . (1983) The Negative Numbers: Worksheets on negative numbers. Rehovot: The Weitzmann Institute of Israel, Department of Science Teaching.Google Scholar
Artin, E. and Schreier, O. (1926) “Algebraische Konstruction reeller Körper.” Hamb. Abh. 5: 85-99. As reprinted in E. Artin, Collected Papers, edited by S. Lang and J. Täte. First edition: Reading, Mass.: Addison-Wesley Publ. Co., 1965. Second Edition (cited): Heidelberg, New York: Springer Verlag, 1982.Google Scholar
Barwise, J. (1973) “Absolute logics and £co,°°.” Annals of Mathematical Logic, 4: 309-40.CrossRefGoogle Scholar
Barwise, J. (1975) Admissible Sets and Structures. Heidelberg, New York: Springer Verlag.CrossRefGoogle Scholar
Brunschvicg, L. (1912) Les Stapes de la Philosophie Mathimatique. Nouveau Tirage. Paris: Blanchard, 1981.Google Scholar
Cardano, G. (1545) The Great Art, or the Rules of Algebra. Translated by Witmer, T., Cambridge, MIT Press 1968.Google Scholar
Carnot, L. (1803) Giomitrie de Position. Paris: Crapelet, Duprat.Google Scholar
Conway, J. (1976) On Numbers and Games. New York: Academic Press.Google Scholar
Dedekind, R. (1872) Continuity and Irrational Numbers. As reprinted in Essays on the Theory of Numbers. Translated by Beman, W., New York: Dover, 1963.Google Scholar
Deligne, P. (1974) “La Conjecture de Weil I.” Publications Mathimatiques de I'Institute des Hautes Etudes Scientifiques 43:273-307.CrossRefGoogle Scholar
Descartes, R. (1637) Giomitrie. References to facsimile pages of first edition, as reprinted in: Smith, D. and Latham, M., trans., The Geometry of Reno Descartes. New York: Dover, 1954.Google Scholar
Dieudonné, J. (1974) Cours de Giomitrie Algibrique I. Apergu Historique sur le Diveloppement de la Giomitrie Algibrique. Paris: Presses Universitäres de France, Collection SUP.Google Scholar
Ehrlich, P. (1987a) “An alternative construction of Conway's ordered field N0.” TO appear in: Algebra Universalis.Google Scholar
Ehrlich, P.. (1987b) “Universally extending continue”. Manuscript, Northwestern University.Google Scholar
Faltings, G. (1983) “Endlichkeitsätze für abelsche Varietäten über Zahlkörpern.” Inventiones Mathematicae 73: 349-66.CrossRefGoogle Scholar
Faltings, G. (1984) “Die Vermutungen von Täte und Mordell.” Jahresbericht der Deutsche Mathematik-Vereins 86:1-13.Google Scholar
Feferman, S. (1977) “Theories of finite type related to mathematical practice.” In Handbook of Mathematical Logic. Edited by Barwise, J., Amsterdam: North-Holland, Pages 913-72.CrossRefGoogle Scholar
Field, H. (1980) Science Without Numbers. Princeton: Princeton University Press.Google Scholar
Friedman, H. (1981) “On the necessary use of abstract set theory.” Advances in Mathematics 41: 209-80.CrossRefGoogle Scholar
Gillespie, C. (1971) Lazare Carnot, Savant. Princeton, Princeton University Press.Google Scholar
Harel, D. (1979) First-order Dynamic Logic. Berlin, New York: Springer Verlag.CrossRefGoogle Scholar
Henkin, L. (1950) “Completeness in the theory of types.” Journal of Symbolic Logic, 15: 81-91.CrossRefGoogle Scholar
Hilbert, D., and Bernays, P. (1939). “Supplement 4. Formalismen zur deductiven Entwickelung der Analysis.” In Die Grundlagen der Mathematik, Vol. II. Berlin: Springer Verlag.Google Scholar
Krantz, D., Luce, R. D., Suppes, P. and Tversky, A. (1971) Foundations of Measurement, Vol. I. New York: Academic Press.Google Scholar
Kreisel, G. (1952). “On the interpretation of non-finitist proofs, II. Interpretation of Number theory.” Journal of Symbolic Logic 17:43-58.CrossRefGoogle Scholar
Maddy, P. (1985) “New directions in the philosophy of mathematics.” In: PSA 1984, Vol. 2, Pages 427-48: Philosophy of Science Association.Google Scholar
Manders, K. L. (1982) “On the space-time ontology of physical theories.” Philosophy of Science 49:575-90.CrossRefGoogle Scholar
Manders, K. L. (1987) “Logic and conceptual relations in mathematics.” To appear in Logic Colloquium ‘85. Amsterdam: North-Holland.Google Scholar
Martin, D. A. (1976) “Hubert's first problem: The continuum hypothesis.” In Mathematical Developments arising from Hubert's Problems. Edited by Browder, F., Providence, American Mathematical Society, Pages 81-92.CrossRefGoogle Scholar
Meyer, A. and Parikh, R. (1981) “Definability in dynamic logic.” Journal of Computer and Systems Sciences 23:271-98.CrossRefGoogle Scholar
Nagel, E. (1935) ““Impossible Numbers:” A chapter in the history of modern logic.” In Studies in the History of Ideas, Vol. III. Edited by Columbia Dept of Philosophy, New York: Columbia University Press, 1935. Reprinted as Chapter 8 in Teleology Revisited. New York: Columbia University Press.Google Scholar
Putnam, H. (1980) “Models and Reality.” Journal of Symbolic Logic 45: 464-82.CrossRefGoogle Scholar
Pycior, H. (1984) “Internalism, externalism, and beyond: 19th century British algebra.” Historia Mathematica 11: 424-41.CrossRefGoogle Scholar
Richards, J. (1980) “The Art and Science of British Algebra: a study in the perception of mathematical truth.” Historica Mathematica 7:343-365.CrossRefGoogle Scholar
Robinson, A. (1966) Non-standard Analysis. Amsterdam: North-Holland.Google Scholar
Schrecker, P. (1935) “Arnauld, Malebranche, Prestet, et la Thiorie des Nombres Ne-gatifs.” Thales 2: 82-90.Google Scholar
Takeuti, G. (1978) Two Applications of Logic to Mathematics, Part U-A Conservative Extension ofPeano Arithmetic. Tokio and Princeton: Iwami Shoten and Princeton University Press.Google Scholar
Tarski, A. (1959) “What is elementary geometry?” In: Henkin, L., Suppes, P., Tarski, A., ed., The Axiomatic Method. Amsterdam: North-Holland, pp. 16-29.CrossRefGoogle Scholar
Van Aken, J., (1986) “Axioms for the set theoretic hierarchy.” Journal of Symbolic Logic 51: 992-1004.CrossRefGoogle Scholar
Van den Dries, L., (1984a) “Exponential rings, exponential polynomials and exponential functions.” Pacific Journal of Mathematics 113: 51-66.CrossRefGoogle Scholar
Van den Dries, L., (1984b) “Algebraic theories with definable Skolem functions.” Journal of Symbolic Logic 49: 625-629.CrossRefGoogle Scholar
Van den Dries, L., (1986) “A completeness theorem for trigonometric identities and various results on exponential functions.” Proceedings of the American Mathematical Society 96: 345-52.CrossRefGoogle Scholar
Weyl, H. (1913) Die Idee der Riemannshen Fläche. Leipzig, Berlin: B. Teubner 1913, 1923.Google Scholar
Weyl, H. (1918) Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis. Leipzig: Veit. Reprinted, Berlin and Leipzig: de Gruyter, 1932.CrossRefGoogle Scholar