Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T11:01:56.843Z Has data issue: false hasContentIssue false

XXVI.—Some Confluent Hypergeometric Functions of Two Variables

Published online by Cambridge University Press:  15 September 2014

A. Erdélyi
Affiliation:
Mathematical Institute, University of Edinburgh
Get access

Extract

1. This paper is the continuation of a former one (Erdélyi, 1939), and deals with the integration of the system of two partial linear differential equations of the second order

The former paper will be referred to as I; all the notations of I will be retained without further explanation.

Type
Proceedings
Copyright
Copyright © Royal Society of Edinburgh 1940

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Appell, P., et Kampé de Fériet, J., 1926. Fonctions hypergéométriques et hypersphériques. Polynomes d'Hermite, Paris.Google Scholar
Borngässer, L., 1933. “Ueber hypergeometrische Funktionen zweier Veränderlichen,” Dissertation, Darmstadt.Google Scholar
Erdélyi, A., 1939. “Integration of a Certain System of Linear Partial Differential Equations of Hypergeometric Type,” Proc. Roy. Soc. Edin., vol. lix, pp. 224241.Google Scholar
Horn, J., 1931. “Hypergeometrische Funktionen zweier Veränderlichen,” Math. Ann., vol. cv, pp. 381407.CrossRefGoogle Scholar
Horn, J., 1935. “Hypergeometrische Funktionen zweier Veränderlichen,” Math. Ann., vol. cxi, pp. 638677.CrossRefGoogle Scholar
Horn, J., 1938. “Ueber eine hypergeometrische Funktion zweier Veränderlichen,” Monatshefte Math. Phys., vol. xlvii, pp. 186194.Google Scholar
Horn, J., 1939Ueber eine hypergeometrische Funktion zweier Veränderlichen,” Monatshefte Math. Phys., vol. xlvii, pp. 359379.CrossRefGoogle Scholar
Humbert, P., 1920–21. “The Confluent Hypergeometric Functions of Two Variables,” Proc. Roy. Soc. Edin., vol. xli, pp. 7396.Google Scholar