Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T07:00:55.152Z Has data issue: false hasContentIssue false

XII.—Molecular Energy in Gases

Published online by Cambridge University Press:  15 September 2014

Get access

Extract

Experiments on the specific heats of gases and on their infra-red emission and absorption have gone a good way towards showing how the molecules take up energy when a gas is heated, and have raised questions as to how far the observed facts may be explained on the basis of “Newtonian dynamics,” and what particulars suggest or necessitate a resort to the Quantum Theory. It may be useful to state some of these questions without attempting categorical answers, which indeed cannot be offered until the physical concepts underlying the Quantum Theory have become more definite.

Type
Proceedings
Copyright
Copyright © Royal Society of Edinburgh 1920

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

page 104 note * E.g. in Perrin's Les Atomes, art. 94.

page 105 note * Cf. Perrin (loc. cit.): “Quant au rayon de protection, distance des centres au moment du choc, il définit une distance pour laquelle la substance de l'atome exerce une force répulsive énorme sur la substance d'un autre atome.… En d'autres termes, chaque atome est condensé au centre d'un mince armure sphérique, relativement très vaste, qui le protège contre l'approche des autres atomes.”

page 106 note * Eucken, A., Sitzungsb. d. k. preuss. Akad., Feb. 1912.Google Scholar

page 106 note † Scheel and Heuse, , Sitzungsb. d. k. preuss. Akad., Jan. 1915;Google ScholarAnn. d. Physik, 1913, vol. xl, p. 473.Google Scholar

page 106 note ‡ Shields, M. C., Phys. Bev., Nov. 1917.Google Scholar

page 107 note * Taking hv as the quantum of kinetic energy of rotation, the corresponding quantum of angular momentum is h/π. The theory requires that no blow should communicate angular momentum at all unless it communicates as much as this, whether we regard the indivisible quantum concerned in the operation as so much energy hv or as so much “ action” h, the dimensions of which are those of angular momentum.

page 108 note * An interesting paper by Bjerrum, (Vorhandl. d. deutsch. Phys. Gesellschaft, 1914, p. 737) suggests various configurations of a CO2 molecule to give the three observed periods of vibration.Google Scholar

page 108 note † Capstick, , Phil. Trans., A, 1895, vol. 186, p. 588.Google Scholar