Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T16:27:30.508Z Has data issue: false hasContentIssue false

I.—The Molecular Spectra of the Hydrogen Isotopes. I.—Application of the Rotating Vibrator Model to the States of D2

Published online by Cambridge University Press:  15 September 2014

Ian Sandeman
Affiliation:
University of St Andrews
Get access

Extract

The theory of the rotating vibrator has been developed by the late J. L. Dunham (1932). The essential step in Dunham's treatment of this question is his replacement of the potential expression occurring in the Schrödinger equation for the diatomic molecule by an arbitrary function in terms of the nuclear separation. When this replacement is made, the Schrödinger equation can be solved by methods developed by Wentzel (1926), Brillouin (1926), and Kramers (1926), and the energy of the rotating vibrator can be expressed as a power series in the quantum numbers in a form convenient for application to spectral data.

Type
Proceedings
Copyright
Copyright © Royal Society of Edinburgh 1940

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Aston, F. W., 1936. “Masses of some Light Atoms measured by means of a New Mass-Spectrograph,” Nature, London, vol. cxxxvii, p. 357.CrossRefGoogle Scholar
Birge, R. T., 1929. “Probable Values of the General Physical Constants,” Phys. Rev. Supplement, vol. i, pp. 173.Google Scholar
Brillouin, L., 1926. “La méchanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives,” C.R. Acad. Sci. Paris, vol. clxxxiii, p. 24.Google Scholar
Davidson, P. M., 1932. “Eigenfunctions for Calculating Electronic Vibrational Intensities,” Proc. Roy. Soc., A, vol. cxxxv, pp. 459472.Google Scholar
Dieke, G. H., 1935. “The 3p 3∑ → 2s 3∑ Bands of HD and D2,” Phys. Rev., vol xlviii, p. 606.CrossRefGoogle Scholar
Dieke, G. H., 1936. “The 2s'∑ → 2p'∑ Bands of the Hydrogen Molecule,” Phys. Rev., vol. i, p. 797.CrossRefGoogle Scholar
Dieke, G. H., and Blue, R. W., 1935. “Fulcher Bands of HD and D2,” Phys. Rev., vol. xlvii, p. 261.CrossRefGoogle Scholar
Dieke, G. H., and Lewis, (Miss), M. N., 1937. “Bands of HD and D2 Ending on the 2p'∑ State,” Phys. Rev., vol. lii, p. 100.CrossRefGoogle Scholar
Dunham, J. L., 1932. “The Wentzel-Brillouin-Kramers Method of Solving the Wave Equation,” Phys. Rev., vol. xli, p. 713; “The Energy Levels of a Rotating Vibrator,” Phys. Rev., p. 721.CrossRefGoogle Scholar
Kramers, H. A., 1926. “Wellenmechanik und halbzahlige Quantisierung,” Zeits. Phys., vol. xxxix, p. 828.CrossRefGoogle Scholar
Richardson, O. W., 1934. Molecular Hydrogen and its Spectrum, Yale Univ. Press.Google Scholar
Sandeman, I., 1935. “The Mathematical Representation of the Energy Levels of the Secondary Spectrum of Hydrogen.—II,” Proc. Roy. Soc. Edin., vol. lv, pp. 4961.Google Scholar
Van Vleck, J. H., and Sherman, A., 1935. “The Quantum Theory of Valence,” Rev. Mod. Phys., vol. vii, pp. 168228.Google Scholar
Wentzel, G., 1926. “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik,” Zeits. Phys., vol. xxxviii, p. 518.CrossRefGoogle Scholar